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A POSTERIORI ERROR ESTIMATES
FOR NONLINEAR PROBLEMS.
L"(0,T; L*(©2))-ERROR ESTIMATES FOR FINITE ELEMENT
DISCRETIZATIONS OF PARABOLIC EQUATIONS

R. VERFURTH

ABSTRACT. Using the abstract framework of [9] we analyze a residual a poste-
riori error estimator for space-time finite element discretizations of quasilinear
parabolic pdes. The estimator gives global upper and local lower bounds on
the error of the numerical solution. The finite element discretizations in par-
ticular cover the so-called 6-scheme, which includes the implicit and explicit
Euler methods and the Crank-Nicholson scheme.

1. INTRODUCTION

We analyze a residual a posteriori error estimator for space-time finite element
discretizations of parabolic pdes. Each space-time element K x J contributes the
weighted sum of three terms:

1. the residual of the computed numerical sélution with respect to the strong
form of the differential operator evaluated on K x J,

2. the jump across K x J of that trace operator which naturally connects the
strong and the weak formulation of the differential equation, and

3. the jump of the numerical solution across K x 0J.

Here, K stands for an arbitrary element of the spatial mesh and J denotes an
arbitrary interval of the time mesh. We could also extend our analysis to error esti-
mators which are based on the solution of auxiliary local time-dependent problems.
We do not follow this line here, in order not to overload the presentation.

In order to construct our a posteriori error estimator and to prove that it yields
upper and lower bounds on the error, we use the techniques introduced in [9] and
consider in Section 2 abstract nonlinear problems of the form

(1.1) F(u)=0
and corresponding discretizations of the form
(1.2) F(u)) = 0.

Here, F € C}(X,Y*) and F}, € C(X},,Y;"), X, C X and Y, C Y are finite dimen-
sional subspaces of the Banach spaces X and Y, and * denotes the dual of a Banach
space.
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If up € X is a solution of problem (1.1) such that DF'(ug) is an isomorphism of
X onto Y* and DF is Lipschitz continuous at ug, we know from Proposition 2.1 in
[9] that

(1.3) | Fw)lly+ < llu—uollx <l F(u)]y-

holds for all u in a suitable neighbourhood of uy. The constants ¢ and ¢ depend on
DF(up) and DF(ug)~!. They measure the sensitivity of the infinite dimensional
problem (1.1) with respect to small perturbations. For a simple model problem we
derive explicit bounds for ¢ and € in Section 4.

When applying estimate (1.3) to an approximate solution u;, € X}, of problem
(1.2) one must evaluate the residual ||F'(up)|y~. This is as expensive as the so-
lution of the original problem (1.1) since it amounts in the solution of an infinite
dimensional maximization problem. In order to obtain error estimates which are
better amenable to practical calculations, we approximate the left and right-hand
sides of inequality (1.3) by ||Fh(uh)||1~,; and ||(Idy — Rp)* Frn(up)|y~, respectively.

Here ﬁh(uh) is obtained by locally projecting F'(up) onto suitable finite element
spaces, ?h consists of appropriate test functions having a local support, and Ry, is
a suitable quasi-interpolation operator.

For parabolic pdes, these general results lead to error estimates in
an L"(0,T; W&’p (Q))-norm.  The space Y then consists of functions in
L?(0,T; Wol’”, (Q)) having their time derivative in L?' (0, T; W=7 (Q)). Due to
the non-local nature of the W~17 (Q)-norm we get into troubles when deriving
lower bounds on the error. This problem is tackled in [10]. Here, we circumvent
this difficulty by imposing a weaker L"(0,T; L?(2))-norm on X and a stronger
LP' (0, T; W2 (Q) N W, o (2))-norm on Y. The corresponding spaces will be de-
noted by X_ and Y, respectively. In particular, the functions in Y now have time
derivatives in L (0,T; L™ ().

In Section 4 we apply the general results of the previous sections to scalar quasi-
linear parabolic pdes of 2nd order. Problem (1.1) then is a variational formulation
which is weaker than the weak formulation and stronger than the very weak formu-
lation of the pde. The discrete problem (1.2) is a Petrov-Galerkin discretization.
The trial space X}, consists of functions which are discontinuous in time and piece-
wise polynomials of degree k > 0. The test space Y}, consists of functions which
are continuous in time, piecewise polynomials of degree k + 1, and which vanish
at the final time 7. This discretization corresponds to an implicit (k + 1)-stage
Runge-Kutta scheme. When applied to a linear problem its stability function is
the (k + 1)-st diagonal Padé approximation. For k = 0 we in particular obtain the
Crank-Nicholson scheme. By slightly modifying the basis functions of Y, we may
also recover the popular #-scheme for all 8 € [0,1]. This in particular covers the
explicit (# = 0) and implicit (§ = 1) Euler schemes.

We obtain global upper and local lower bounds for the error measured in an
L7(0,T; LP(Q))-norm. The upper and lower bounds differ by a factor 1 +7-1h2 4
Th~2. Here, h and 7 are the local mesh-sizes in space and time, respectively. This
factor reflects the fact that the differential operator is of 2nd order with respect to
the space variables but only of 1st order with respect to the time variable. The local
lower bounds may be combined to a global lower bound of the same type. In Remark
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4.5 we briefly comment on error estimates with respect to an L"(0,T; W1r(Q))-
norm and the corresponding difficulties. A more detailed analysis, also including
the time-dependent incompressible Navier-Stokes equations, may be found in [10].
When applied to the corresponding particular examples, our error estimates are
similar to those obtained in [7], [8]. However, only upper bounds on the error are
established there. Moreover, the techniques and, most important, the discretiza-
tions considerably differ from ours. The discontinuous Galerkin method of [7], [8]
is non-conforming with respect to both the weak and the very weak formulations of
a parabolic pde. It corresponds to an implicit (k + 1)-stage Runge-Kutta method
having the (k4 1)-st subdiagonal Padé approximation as stability function. In par-
ticular, the lowest order scheme (k = 0) corresponds to the implicit Euler method,
and the Crank-Nicholson scheme is not covered by this family of discretizations.
In what follows we will always adopt the following convention:

a=b << a<cb
a~b < a=<bandb=<a.

Here, the constant ¢ must not depend on any mesh size.

2. ABSTRACT ERROR ESTIMATES

Let X,Y be two Banach spaces with norms ||.||x and ||.||y. For any element
v € X and any real number R > 0 set Bx(u,R) := {v € X : |lu—v|x < R}.
We denote by £(X,Y) and Isom(X,Y) C £(X,Y) the Banach space of continuous
linear maps of X in Y equipped with the operator norm |.||z(x y) and the open
subset of linear homeomorphisms of X onto ¥. By Y* := L(Y,R) and (,.)y
we denote the dual space of Y and the corresponding duality pairing. Finally,
A* € L{(Y*, X*) denotes the adjoint of a given operator A € L(X,Y).

Let F € C(X,Y*) be a given continuously differentiable function. Given a
solution ug € X of problem (1.1) and an arbitrary element v € X “close” to ug, we
may estimate the error ||u — ug||x by the residual ||F(u)|ly~ (cf. Proposition 2.1
in [9]). For parabolic pde’s we thus obtain control on the L"(0,T; W, *(£))-norm
of the error. However, we are interested in controlling the L"(0,T; L?(2))-norm
of the error. In order to achieve this within the present abstract framework, we
must enlarge the space X and reduce the space Y. We therefore consider three
additional Banach spaces X_, X, and Y} such that Xy C X C X_and Yy CY
with continuous and dense injections. Here, the +/— sign indicates a space with a
stronger /weaker norm. We assume that X_ is reflexive.

Proposition 2.1. Let ug € X be a solution of problem (1.1). Assume that ug €
X+, that DF(ug)* € Isom(Y,, X*), and that there are two numbers Ry > 0 and
B3> 0 such that

I[DF (uo) — DF (uo + tw)wlly; < Btllwllx, lwlx_

2.1
(2.1) Vw € Bx, (0, Ro),t € [0,1].

Set

: - = — *
R:=min{Ro, 87| DF(u0)* |z(x+ v,y 287 I1DF(uo)* ey x)}-
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Then the following error estimate holds for all u € Bx_ (ug, R) :
(2.2)

1 . =
S IDF (o)l 2y, xo) IF@)lly; < llu = uollx_ < 21DF(u0)™ lleexs v lF@)lly; -

Proof. Let u € Bx, (ug, R). Consider an arbitrary element w € X* and set ¢ :=
DF(ug)* 'w € Y,. We then have

(u— o, w)x_ =(DF(uo)(u = uo), P)v,
:<F(u)a§0>Y+

1
+ / ([DF(ug) — DF(ug + t(u — ug))](u — uo), @)y, dt.
0
Inequality (2.1) and the continuity of DF(uo)*_1 imply that

| / ((DF (o) — DF (g + t(u — o))}t — o), 9y, df
0

A

1
< 5hllu = uollx, llu = wollx_ llellv,

INA

1 -
§ﬁ||DF(u0) lzox= v Rllu — wol| x_ lw]| x~ .

Combined with the above representation of (u — ug,w)x_, this yields

- 1
(u—uo,wyx_ <{[[DF(uo)" e vp)llF(w)lly; + §||U — || x_ Hwl|x- .

Since X_ is reflexive and w € X* was arbitrary, this implies the upper bound of
estimate (2.2).
In the same way, we obtain

<F(u) ) 90> Y,

1
= (u— g, w)x — /0 ([DF(uo) — DF (uo + t(u — u0))) (u — o), @)y, dt

1
< llu = uollx_llwllx= + 5 Bllu — uollx, llu —wollx_1lelly,

< 2| DF(uo)"lcevy,x=)llw = wollx_[lelly, -
Since ¢ € Y, is arbitrary, this proves the lower bound of estimate (2.2). |

The condition DF(ug)* € Isom(Y,,X*) of Proposition 2.1 is more restrictive
than the assumption DF(ug) € Isom(X,Y™*) which is needed to bound |u — uo||x
by || F'(u)|ly~ (cf. Proposition 2.1 in [9]). For pdes, it is equivalent to an additional
regularity condition. For linear problems, i.e. when DF' is constant, one may
extend F' by continuity to a continuously differentiable map of X_ to Y. Then
the space X is not needed. For nonlinear problems, however, this extension may be
impossible, or the derivative of the extension may be no longer Lipschitz continuous.
This is the place where the space X comes into play.

The factor || DF(uo)*| z(y, x*) in the lower bound of estimate (2.2) corresponds
to a differential operator which is local and the norm of which can be estimated
in terms of its coefficients. The factor ||DF(u0)*_1|| £(x*,v,) in the upper bound
of estimate (2.2) is much more severe. In some applications, in particular when

X_ is a Hilbert space, | DF(ug)* l2(x=,v,) can be replaced by | DF(uo)*  wl|y,



A POSTERIORI ERROR ESTIMATES FOR NONLINEAR PROBLEMS 1339

where w € X* satisfies ||w||x+ = 1 and (v — ug,w)x_ = ||lu — ugl|x_. The quan-
tity |DF(ug)*~'w|ly, may be estimated numerically by approximately solving a
discrete analogue of the corresponding adjoint pde.

Let X; C X1 and Y, C Y be finite dimensional subspaces and F}, € C(Xp,Y))
be an approximation of F'. Given an approximate solution u, € X} of problem
(1.2), Proposition 2.1 allows us to estimate the error |lug — un||x_ by the resid-
ual [|F(un)|ly;. The evaluation of the latter, however, is a difficult task since it
amounts in the solution of an infinite dimensional maximization problem. In order
to obtain an approximation of the residual which is easier to compute, we introduce
a restriction operator Ry, € L(Y,Y3), a finite dimensional subspace Yi C Yy, and
an approximation ﬁh : Xp — Y™ of F at up. In the context of pdes ﬁh is obtained
by locally freezing the coefficients of the differential operator. We equip Y;, with
the norm of Y.

Proposition 2.2. The following estimates hold:
(2.3)
IF(un)lly; < (Idy, — Rn)*Fa(un)lly: + |(Idy, — Ra)*[F(un) — Fu(un)]lly:
+ | RRIF (un) — Fu(un)lllvy + 1REFr(un) vy

and

(2.4) 1B (unlly: < IFCun) g + I Cun) = Fi(un) 5.
If there is a constant cg, which does not depend on h, such that
(2.5) I(Tdy, — Rn)*Fh(up)lly; < ;0||ﬁh(uh)||9;,

then both ||(Idy, — Rn)*Fi(un)lly: and || Fy(un))|
for the residual || F'(us)|y: -

P yield upper and lower bounds

Proof. Estimate (2.3) follows from the identity

(F(un), @)y, =(Fn(un), — Rug)y, + (F(up) — Fu(un), o — Ruo)y,
+ (F(un) = Fr(un), Ra)y, + (Fa(un), Rnp)yv,

which holds for all ¢ € Y,. Estimate (2.4) follows from the triangle inequality.
The statement concerning upper and lower bounds for the residual is an obvious
consequence of inequality (2.5). [

The second terms on the right-hand sides of estimates (2.3) and (2.4) measure
the quality of the approximation ﬁh(uh) to F(up). Usually, they are higher or-
der terms when compared with ||(Idy, — Rh)*ﬁh(uh)”YJ: and || Fy(us)| .- The
term || Rj[F(un) — Fn(un)]|ly; is the consistency error of the discretization. It
can be estimated a priori and vanishes in the applications of Section 4. The term
| 2} Fr(un)||y; measures the residual of the algebraic equation (1.2) and can be
evaluated by standard methods. Inequality (2.5) is a non-trivial condition since
it claims that a supremum with respect to an infinite dimensional space may be
bounded from above by a supremum with respect to a finite dimensional space.

Propositions 2.1 and 2.2 will be used in the following way. Any upper bound
for ||(Idy, — Rh)*ﬁh(uh)ﬂyi yields a reliable error estimator. If in addition the

error estimator yields a lower bound for ||Fj,(up)|

¢+, it is also efficient. Here,
h
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we adopt the standard convention that an error estimator is called reliable (resp.
efficient) if it yields an upper (resp. lower) bound for the error. Moreover, upper
and lower bounds may contain multiplicative constants which do not depend on
the discretization parameter h.

3. AUXILIARY RESULTS

Function spaces. Let Q2 be a bounded, connected, open domain in R*,n > 2,
with polyhedral boundary I'. For any open subset w of Q2 with Lipschitz boundary
7, we denote by WkP(w),k € N,1 < p < oo, LP(w) := WOP(w), and LP(vy) the
usual Sobolev and Lebesgue spaces equipped with the standard norms (cf. [1] and
Vol. 3, Chap. IV in [6]). Let
WyP(Q) :={uec WH(Q):u=00nT}
and set for 1 < p < 0o
WP (Q) := WP (Q)*.

Here, p’ denotes the dual exponent of p defined by ;% + % = 1. In what follows, a
prime will always denote the dual of a given Lebesgue exponent.

Let V and W be two Banach spaces such that V' C W with continuous and dense
injection. Given two real numbers a and b with a < b, we denote by LP(a,b; V), 1 <
p < oo, the space of measurable functions u defined on (a,b) with values in V
such that the function ¢t — |lu(.,t)fiv is in LP((a,b)). LP(a,b; V') is a Banach space
equipped with the norm

b 1/p
lullzrcasy = { [ luCoEde}

(cf. [6], Vol. 5, Chap. XVIII, §1). Slightly changing the notation of [6], we further
consider the Banach space

WP(a,b; V,W) := {u € LP(a,b; V) : Oyu € LP(a,b; W)}
equipped with the norm

b » b » 1/17
lullws vy = { [ a0l + [ 1o, az} "

Here, the partial derivative 0;u must be interpreted in the distributional sense (cf.
[6], loc. cit.). For all smooth functions ¢ € D((a,b)) it satisfies the identity

b b
/ Byu( t)p(t)dt = — / (. t)¢ (B)dt,

where the integrals are taken in W. From Proposition 9 in [6], loc. cit., it follows
that the traces u(.,a) and u(.,b) are defined as elements of W, provided p > 1. We
therefore set for 1 < p < oo

Wl(a,b; V,W) :={u e WP(a,b;V,W) : u(.,b) = 0}.

Given an interval I C R, a suitable subset w C 2, and numbers 1 < p, 7 < oo, we
will use the following abbreviation:

LP(w x I) = LP(I; L™ (w)), WP(w x I):=WP(I;W?™(w), L™ (w)).
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Finite element partition. Denote by 7' > 0 an arbitrary but fixed time. Let
I, = {[tj,tj41) : 1 < j < N;},7 > 0, be a family of partitions of [0,7] with
0=t <t2<...<tNT+1=T. For 1 <j < N, set

Jy = [tgstynl s 7=t — 4

We assume that the family Z, is shape regular, i.e., the ratios 7;/7;41 and 7j41/7;
are bounded from above independently of j and 7.

With each 1 < j < N,, we associate a partition 7; of 2 into n-simplices. We
denote by &; the set of the interior faces of 7;. For K € T; and E € &; let hg,
Pk, and hg be the diameter of K, the diameter of the largest ball inscribed into
K, and the diameter of E. We assume that the partitions 7; satisfy the following
two conditions:

(1) Admissibility: Any two simplices of 7; either are disjoint or share a complete
smooth submanifold of their boundaries.

(2) Shape regularity: The ratio hx/px is bounded from above independently of
K €7T;,j,and 7.

Condition (2) allows the use of locally refined meshes. It implies that the ratio
hi/hg, for all K € T;, all faces E of K, and all j, is bounded from above and from
below by constants which do not depend on K, E,j, and .

Denote by

P ={KxJ;:1<j< N, KeT;}

the partition of the space-time cylinder Q x [0, 7] into prisms which is induced by
Z, and the 7;’s.

For any F € £;,1 < j < N;, and any piecewise continuous function u, we denote
by [u]g the jump of u across F in an arbitrary but fixed direction ng orthogonal
to E. Finally, we introduce the following neighbourhoods of elements and points:

U(tj) = [tmax{l,j—1}7tmin{N,.—i—l,j—i—l}]a 1< .7 < NT7
U(J;) :==U(t;) UU(t541) = [tmax{1,j—1}> bmin{N, 1,542}, 1 <3 < Np,

UK)= |J) K, KeT,1<j<N,
K'NK#)
K'eT;

UE)= |J K, E€&,1<j<N,
ENK'#)
K'eT;

up):= |J P, Pep;,

PNP'#0)
P'eP.

WK = U K/’ KET}aISjSNT:
K'NKeE;
K'eT;

wg = U K', Ec€&;,1<j<N,.

ECOK’
K'eT;

(3.1)

Here, K N K’ € &; means that K and K’ share a complete (n — 1)-dimensional
smooth submanifold of their boundaries.
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Finite element spaces. Denote by Py, k > 0, the space of polynomials (in z)
of degree at most k. Given an admissible partition 73 of 2, we define the finite
element spaces (in z) as usual:

S,]f’_l ={u:Q—->R:ulg eP, VKeTp}, k>0,
(3.2) SP0=50tne(@), k>1,

S,lfzg ={ueS:u=00onT}, k>1.

For any ¥ > 1 and any 1 < p < oo we obviously have S,’f’o C WhP(Q) and
Sio C Wo™ ().

Let V1, ..., Viv. be finite element subspaces of C(f2) associated with the partitions
T1,...,Tn, introduced above. For k > 0, we define finite element spaces in space
and time by

(3:3)  SPT'(Vaen) := span{xs; (1)t*v;,u(2) : 0 < p < k,1 < j < Nryv;, € Vi

Here, x,, denotes the characteristic function of the interval J;. The elements of
SF~1(Vy(r)) are discontinuous at the intermediate points ¢z, ...,tx,. But the left-
sided limits u(.,t; — 0) := ogmou("tj — 1) exist for all 2 < j < N; + 1; and the
right-sided limits u(.,t; +0) := 0iitm Ou(.,tj +t) exist for all 1 < j < N,. We have

SE=L(Vy(ry) C LE(Q2 % (0,T)) for all 1 < p,7 < co. But due to the discontinuities
at the intermediate points ¢, ...,¢n,, the space Sf"l(Vh(T)) is not contained in
any of the spaces WP(0,T; WL™(Q2), L™(Q)),1 < p,m < oco. In order to obtain
conforming approximations of these spaces, we denote by A;(t),1 < j < N, +1,
the piecewise linear function corresponding to Z, which takes the value 1 at the
point t; and which vanishes at all other points ¢;,1 < 4 < N, 4+ 1,5 # j. Set
b;(t) == 4X;(t)\j+1(t),1 < j < Ny, and for 6 € [0, 1] define

NO(e) = 2(6) + 50— Dlb(t) ~ b1 (5] 25 < N,

3 1
(3.4) A1) = M) + 50 = )b (o),
3 1
A2 (1) = A () = 56— 2)bw, (0):
Obviously, the functions A§-1/ %) and A; coincide. For k£ > 2 we then set

SIO (Vi) = span{ A\ (t)vj(2) : 1 < j < Noyv; € Vi),

(35) Sf;k70(vh(7')) = S‘ze-;l,o(vh(T)) D Span{XJj (t)tﬂbj(t)wj,u(z) :
0<pu<k-21<j<N,w, eV}

For all k > 1 and 1 < p,7 < oo we have SZ*0(V},y) € WE(0, T; W™ (), L™(Q)).
Moreover, on the open subintervals (¢;,¢;41),1 < 7 < Ny, the distributional de-
rivative dyu of u € Sf?k’O(Vh(T)) coincides with the classical partial derivative. For
abbreviation, we introduce the space
(3.6) 0 = SIO(Vy(ry) with V; = Sig ,1 < j < N

It will play a fundamental role in deriving reliable error estimates. Figure 1 shows
the functions )\5.0) for some values of . The following lemma collects some properties
of these functions. We omit its straightforward proof (cf. Lemma 3.1 in [10]).
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i

Ficure 1. A% top left, A*/% top right, A{”/® bottom left, A"
bottom right

Lemma 3.1. The functions /\g.e),l <j < N:+1,0 €[0,1], defined in (3.4) have
the following properties:

i1 ’
/ MO (t)dt = 675, V1<j<N,,6¢€0,1],

/ AOWydt = (1 - 6)mj_1, Y2<j<N.+1,0€0,1],
ti—1

M2+ A0 () =1onJ;, VI<j<N,0€[0,1],
Oy = XDt + i1 — t) on Jj, v1<jsNr,0e[0,1],

J Jj+1

A =0 VI<j<N, +10€[ ]tE[OT]
4

1)) < 3 V1<j< N,+1,0€(0,1],t€[0,T]

Interpolation in space. Let 7, be an admissible and shape regular partition of €2
into n-simplices. We denote by I, : L*(2) — S;llzg the quasi-interpolation operator
of Clément (cf. [5] and Exercise 3.2.3 in [4]).

Lemma 3.2. The operator I, satisfies the following error estimates for all K €
Th,E €&, and 1 <p < oo:

= Tnullwes ) < B Fllullwis @y Y0 <k <1< 2,ue WP(U(K)),
-1
lw = Inullr 5y = bg *lullwer ) YV1<1<2,ue WHP(U(E)),
[ Thull ey = Wi llullweewry) + llulle ) Yu € WP(U(K)).

Proof. The first two inequalities follow from [5] and Exercise 3.2.3 in [4]. The third
estimate follows from the first one and the triangle inequality. O



1344 R. VERFURTH

Interpolation in time. Let V and W be Banach spaces as above. For 1 < j <
N + 1 we denote by m; : WL(0,T;V,W) — V the L?(U(t;))-projection, i.e.

tj+1
3.7 U = ——1——/ u(.,t)dt.

T+ Ti-1 Ji,
Here, we formally set
To:=TN.41:=0, t0:=0, tn, 42 :=T.
Note that the integral in (3.7) is taken in V.

Lemma 3.3. The operator m; satisfies the following estimates for all 1 < j <
N, +1,ue WP((0,T;V,W), and 1 < p < oo:

ImjullLewey)izy < ullerieyyizy, 2 =V, W,
lw — mjull e e ywy < 2075 + Tj—D)l10sull Le (U t;);w) s
[u(., t5) — miullw < (7 +Tj—1);1r”atu”LP(U(tj);W)-
Proof. From (3.7) and Holder’s inequality we obtain
1 ti+1
ImsullLe@eyz) = (15 + 75-0)7 1| - u(., t)dtl|z < |lull e e, ):2)-

From Hoélder’s inequality we get, for all t € U(t;),

i
1
ul.,t) —u(., t)llw = II/ Ou(., o)dollw < [t = ;|7 (10wl Loey);w)-
tj

Taking the p-th power and integrating from ¢;_; to t;41, this yields
(3.8) lw = u( t)lLewe)w) < (75 + Tj—D)II0sull Le ;) w).
Combining estimate (3.8) with the first assertion of the lemma, we obtain
lu = mjull Lo e )w)
< lw = wls t) e wy + lluls t5) = mull e, w)

= [lu = u(s t) Lo sy + I [ul t5) — Ul o))
<2(r; + Tj—l)”atUHLp(U(tj);W)-

Estimate (3.8), the definition of 7; and Holder’s inequality finally yield
lu(., t5) = mjullw = lIm;[ul., ;) — ulllw

tit+1
< (Tj + Tj_l)_l/ ||u(.,tj) — u(.,t)llwdt

tj—1
_ 1
< (15 +75-1) " = uls ) | e ey
1
< (15 + 75-1) 7 0cull Lo (25);w)-

This proves the last assertion of the lemma. O
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Interpolation in space and time. Now, we combine the operators I;, corre-
sponding to 7;, and 7;, and define the operator I. : WP(0, T} Wol’"(ﬂ),L"(Q)) —
6-,1 <p,m < oo, by

r

(3.9) Lu:=>_ A (t)m;Lu.
j=1

Note that 7; and I; commute for all 1 < 7 < N;.
Lemma 3.4. The operator I, satisfies the following error estimates for all Q =
KxJj,1<j<N,KeT,Ec&,1<pm<oo,dcl01], and u e WE(U(Q)):
lu — Ll s gy X (B +m)llullwe wiq)),
v — Lrull e (Exg,) 2 hz_ﬁ(h%{ + ) llullwew @)
a5 = Lruls ) |y 2 75 P (R + 1) el wz wi@))-

Proof. The definition of I, and Lemma 3.1 imply that the splitting
uw—Lu= )‘;6) {u—Imju} + )\gi—)l{u — Ijp1mjpau}

holds on J;. Invoking Lemma 3.1 once more, we obtain

4
lu = Lrullpz gy < §{||U — Limjull e @)+ v — Lis1mir1ull e gy}
Let k=jor k=74 1. Lemmas 3.2 and 3.3 and the shape regularity of Z, yield
lu — Lemrull e (g)
< lu—Irullzz(@) + Mklu — meull L2 (g)
= Bycllull Lo, werm )y + Ilu — meull L2 o)
= (W% + m)llullwew@)-
This proves the first estimate of the lemma. The second one is established in the

same way.
In order to prove the third estimate, we now write

u(.,tj) — I-,—U(.,tj) = u(.,tj) — ijju(.,tj)
= u('7 tj) - ﬂ'ju(‘a tj) + Trj[u('a tj) - Iju(" tj)]‘
Lemmas 3.2 and 3.3 and the definition of 7; then yield
(., t5) = Irul, )| L (k)
< (e ty) = mjuls )y + llmjluls ) — Liu(o )]l o)
% L1
<77 0wl Le gy + 77w — Liullrewioy)
< Tj_l/p(h%' + m)llullwewg)-

This completes the proof. O
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Local cut-off functions. Denote by K := {# e R* : 37 | &; < 1,2; > 0,1 <j <
n} the reference n-simplex and set £ := K N { € R" : £, = 0}. Let

n

(@) = (n+1)"]1 Z%H@» pp(@) =n"[1 = &) [] 4
Jj=1

j=1 i=1

3

Given an arbitrary n-simplex K aid a face E of K, we denote by Fx : K —
K,% — x := Fg(2) = bx + Bk an invertible affine mapping such that K is
mapped onto K and E is mapped onto E. Let Fg : E — E be the tranformation
induced by Fix and denote by Bk its Gram determinant. One easily checks that
B = det(B}t By, )'/2. Here B} denotes the matrix which is obtained by discarding
the last column of Bp.

Let J := [0,1] be the unit interval, and set

;(t) :=4t(1 —t).
Given an arbitrary interval J = [a, b], a < b, we denote by F; : J — J the invertible
affine mapping which maps J onto J and 0 onto a. Set
Q:=KxJ,0Q,:=ExJ, 00z :=Kx{0}
and define the transformations F : Q — K x J,Fpg, : 0Q, — E x J, and
Fogy : Qe — K x {0} by
Fo = (Fk,FJ), Foqg, == (FE,FJ) , Faqs = (Fk,a).

Finally, we denote by V; C L®(Q),Vaa, C L®(0QL), and V,4_ C L*(0Q5)
three arbitrary finite dimensional §paces which are kept fixed in what follows. In

applications, these spaces will be subspaces of appropriate spaces of polynomials.
We set

Vg = {ﬂoFél 14 € Vah,
Vag, :={60 FngL 10 € VBQL}7
Vogs == {00 Fag, 10 € Vo,
Let 73, be an admissible and shape regular partition of € into n-simplices. Given

an arbitrary simplex K € 7}, denote by Ak1, ..., Ag (n41) its barycentric coordinates,
and set

n+1
{(n+1)""1 | \ki}?> on K,
(3.10) Vi = 1;[1 K
0 on O\ K.

The function i obviously has the following properties:
Yi ={pg o Fg'} onK,
0<yr(@) <1 VoeQ,
max ¢ (z) =1,

Y = 0on 0K,

Vg = 0on 0K,

Y € CHQ).

(3.11)
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Given E € &, denote by K; and K the two simplices adjacent to E, and enumerate

their vertices so that the vertices of E are numbered first. Set
n

2n . 312
(312) 'l/’E = {n E(AKH)‘KQ’L)} on wg,

0 on N\wg.
One easily checks that the function g has the following properties:
YE ={ppoFg'}! onE,

hk
< < —
0 < ¢p(z) < cn, nax pK) vz € Q,

(3.13) maxve@) =1,
Yg = 0on Owg,
Vg = on Owg,
Y € CHQ).
In particular, the restriction of g to E depends only on the vertices of F.
For 1 <j < N,, we set
Lt —t)(tjpq —t) ifteJ;,
(3‘14) ¢j(t) — ?JT( ])( Jj+1 ) J
0 ift ¢ J;.

Obviously, we have
Yj=1j o0 FJ_jla
0<;(t)<1 VtER,

(3.15) grgf%(t) =1,

1/)]' =0on 8Jj,

¥; € C(R).
Let 1 < j < N,,K € T;, and E € &; be arbitrary. We then use the following
abbreviations:

(3.16) Q:=KxJ;, 0Qp:=K x{t;}, 0Qr := E x Jj.
We define a continuation operator P; : L®(0Qp) — L (K x U(t;)) by
(3.17) Piu(z,t) == u(z,t;) V(z,t) € K xU(ty).

Next, we want to define a continuation operator Pg : L*(0Q1) — L (wg X J;).
To this end, we denote by g = (zg1, ..., ZE,) & Euclidean coordinate system such
that E is contained in the set {zg, = 0}. We then set z’; := (zg1, ..., Z5(n-1)) and
define

YE(z,0)o(z,0,t) if (27,0) € E,
0 if (2/5,0) ¢ E.
Note that, without any restriction on the partition 7}, the factor ¢ g in the definition
of P ensures that V(Pgo) € C(wg x J;) if Vg 0 € C(E x J;). The factor ¢p
may be dropped if 7; has the following property: For any E € &;, the orthogonal

projections of all vertices of wg onto the plane {xg, = 0} lie inside E. In two
dimensions this means that the triangulation 7; is weakly acute.

(318) PEa(xE,t) = {
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Lemma 3.5. Let 1 < j < N, K € T;, and E € &; be arbitrary, and recall the
abbreviations (3.16). Assume that the functions in V Vaa,, and V4 are con-
tinuously differentiable with respect to the time vamable and twice continuously dif-
ferentiable with respect to the space variable. Then the following estimates hold for
allu € Vg,0 € Vag,,v € Vagy, and 1 < p,m < co:

fQ u¢j¢KU
”u”L"(Q) =~ sup W’—
weve PILT (@)
E2||¢1¢KU||LP(Q ~ [|[V*(4h59xu)| 2.
ikl e @) = 10: (vl e (q) »
S50, o¥;vEPEX
lollzeoo,) = sup =22
XEVoq, ”X“Lill (8QL)
hg? 1Y EPEo | L2 (wex ;) = IV (%08 PEO) || L2 (s x ) »
Tj_llle¢EPEU”L?r(wE><Jj) =~ ||8t(¢j¢EPEU)||L’,’r(wE><Jj) >
1/m
1492 P02 wrxay = hE " lolzee0.)
mﬁK’w
”v”L"(K) >~ SuP fK—
weVaqp l[wll L~ "(K)
hi I\ Piolle oy = IV (A% Po)ll 2 w@)) »
7 XYk Pivll e @y = 18609k Piv) | 22w () »
1
Ak Pivll Lz (o)) = Tj/pllvllu(m :

)

)

Proof. We prove the estimates concerning u. The upper bound in the first estimate
follows from Hélder’s inequality and 0 < ¥ < 1,0 < ; < 1. In order to prove the
lower bound of the first estimate, one easily checks that the mapping

N Jo W sbgt

4 — sup - ——

GEVQ* ”v”LP', (Q)

defines a norm on VQ. Since dim VQ < 00, there is a constant ¢ such that
Jo Wsbgd

Vi € V.
||v||LP (Q) Q

il e gy < sup

The definition of Vi therefore yields

uP; YKV 1 w0 Fouh s 0
sup —fg—]——— 7|detBK| ¥ sup fQ RACALLS

veVg ”v”Lf,,/(Q) VeV, “ﬁ”Lzl/(Q)

> éTjildetBK|%”uoFQ||L£(Q*)

= &llullzz ()
In order to establish the second and third estimates, we observe that the mappings
4 — ||V2(¢j¢f(ﬁ)||m(® and @ — [|04(¥ 958l 1z o) define norms on the finite
dimensional space Vj; which are equivalent to the standard norm ||.||.» @) The

desired estimates now follow in the usual way by transforming to O, using the
equivalence of norms there, and transforming back to Q.
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The estimates concerning o and v are established in the same way, taking into
account that Ppo and Pjv are constant along lines perpendicular to £ and with
respect to time, respectively. For a more detailed proof see Lemma 3.8 in [10]. [

4. QUASILINEAR PARABOLIC EQUATIONS OF 2ND ORDER
Variational setting. As a model problem we consider the parabolic boundary
value problem

Owu —V - az,u, Vu) = b(z,u,Vu) inx(0,T),
(4.1) u=0 onI'x (0,T),
u(.,0) = up in Q.
Here, b € C*(2 x R x R*,R) and a € C'(f2 x R x R*,R") are such that the
matrix A(z,y, 2) := (5(0:;ai(z,y, 2) + 0.,0;(2,Y, 2)))1<i,j<n is positive definite for
all x € Q,y € R,z € R™. Moreover, T' > 0 denotes an arbitrary final time which is
kept fixed.
Under suitable growth conditions on a,b, and their derivatives there are real

numbers 1 < p, 7, 7, p < oo such that problem (4.1) fits into the abstract framework
of Section 2 with

X = L7(0,T; Wl (),
Y= WE (0,73 Wo™ (), W1 (92)),
(F(u), ) == —(uo, o(.,0)) wi.

(4.2) T
- / s £), Brspl, ) wrrm it

T
+/ /{g(a:, u, Vu)V — bz, u, Vu)p tdzdt.
o Jo

We recall that a prime denotes the dual of a Lebesgue exponent, i.e.
etc. In order to ensure that F' is well defined, we always assume that

(4.3) p>.

1 1 _
54‘?—1,

Within the framework of Section 2, we further set

Yy = WE (0, T; W™ (Q) nWE™ (Q), L™ (),
(4.4) X_:=L"(0,T;LP (%)),

Xy = L7(0,T; Wy’ (),

where p < o < o0.

In order to better understand the flavour of problem (1.1) and definition (4.2),
we recall the notions of weak and very weak solutions of problem (4.1) (cf. [2],
Sections 11 and 13). A function u € W7 (0, T; Wy *(Q), W ~17(2)) is called a weak
solution of problem (4.1) if

u(.,0) = ugp in WH™(Q)

and

T T
/ (BGgu(.,t), (. O)) i + / / {a(z, u, Vu)Vy — b(z, u, Vu)p}dzdt = 0
0 o Ja
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for all p € LP (0,T; WL™ (Q)). It is a very weak solution if u € X_ and
T
— {uo,¢(.,0)) e —/ (u(.,t), Opp(., t)) Lodt
0

T
4 / {{aleru, V), Vphrns — (b, 4y V), @) yyums Yt = 0
0

for all p € Y. Obviously, every solution of problem (1.1) is a very weak solution of
problem (4.1). Conversely, every very weak solution of problem (4.1) is a solution
of problem (1.1) if it is contained in X. Using integration by parts with respect to
the time variable, one sees that every weak solution of problem (4.1) is a solution
of problem (1.1), and that the converse is true if the solution of problem (1.1) is
contained in W7 (0,T; Wy (Q), W=17(Q)). In this sense, a solution of problem
(1.1) is weaker than a weak solution and stronger than a very weak solution of

problem (4.1). )
One easily checks that DF(u)* € Isom(Y,,X*) if and only if the adjoint lin-
earized problem

—0ww — V - (A(z,u, Vu)Vw) + dya(z, u, Vu) - Vw
+V - (V.b(z,u, Vu)w) — Oyb(z,u, Vu)w = g in Q x (0,T),
w=00onT x (0,7),
w(.,,T)=0in Q
admits, for each g € X*, a unique solution w € Y such that ||w|ly, =< |gllx--
Examples. We consider two particular examples:
(1) A heat equation with nonlitear source term:
a(z,u, Vu) = Vu,
b(z,u, Vu) = f(u),
f€C'(R,R),
IF(s)l <~ Vs €R,
p=r=mn=p=2
(2) A nonlinear convection-diffusion equation:
a(z,u, Vu) := k(u)Vu,
b(z,u, Vu) := f — c(z,u) - Vu,
feL®(R),ce CHQ xR,R"), k € C*(R,R),
k(s) > a>0,]k0(s)| <~ VseR,le{0,1,2},
|0sc(z,8)| <v VreQ,seR,

,7 > 2p.

n
= 4
p=me(nd),p>——

If in example (1) the constant - is sufficiently small, we may use an energy esti-
mate and a perturbation argument to get explicit bounds on |[DF(u)*" || LX*,Yy)
in terms of the norm of the inverse Laplacian with homogeneous Dirichlet boundary
conditions. More precisely, denote by ca := [[(=A) 7 212 (a) wi2(@ynw22(q)) the
norm of the inverse Laplacian with homogeneous Dirichlet boundary conditions.
This quantity only depends on the geometry of 2. Inserting ¢ and b given above
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into the adjoint linearized problem, we immediadely see that DF(u)* = L — N,
where L is the operator associated with the time-reversed heat equation

—Ov—Av=g inQx(0,7T),
(4.5) v=0 onl x(0,T),
v(,T)=0 inQ,

and where the operator NV is given by

(4.6) (Nv, p)y. / /f (u)vep.

From equations (4.5) and (4.6) we deduce that
1Ll v x2) <2 IVl x2) <
and, hence,
IDF(u) ey, xx) <2+
Multiplying the first equation of (4.5) by —0&;v, integrating over Q x (0,T), and
integrating by parts with respect to the space variable, we conclude that
(4.7) [0l Lz (0,1 < gl Lz(0x (0,1))-
Writing the first equation of (4.5) in the form
—Av = g + 8t1)
and using the estimate (4.7), we obtain on the other hand that

(4.8) o]l z2o,rw22(0)) < eaV2{llgllzz@xcom) + 100l 23 0}
< CA\/—||9||L§(Qx(0,T9)'

Estimates (4.7) and (4.8) yield
Il eexs vy <1+ V8ea.
Assume that (1 4+ v/8ca) < 1. A standard perturbation argument then gives

Pt — — -1
IDF(u)* lleix vy < ML Moo v [L = 1L oo v IN ey x )]
1+ \/gm
— ’7(1 + \/gcA) '

Finite element discretization. For the discretization of problem (4.1) we pro-
ceed as in Section 3. We choose a family Z.- of shape regular partitions of the interval
[0,T]. With each time ¢;,1 < j < N,, we associate an admissible and shape reg-
ular partition 7; of €1 into n-simplices and a finite element space V; C WO1 7(Q)
corresponding to 7; and consisting of affine equivalent finite elements in the sense
of [4]. We choose an integer k and a parameter 6 € [0, 1], and set

Xn = 5P (Vi)
(4.9) Y 1= SERHLO(Vy ),

(Fr(un), on)ys, == (F(un), on)y Vun € Xp, on € Yh.

For simplicity, in (4.9) we use the parameter A for the mesh sizes both in space

and in time. We recall that the spaces on the right-hand side of (4.9) are defined
in (3.3) and (3.5) and that X, € X, and Y, C Y. Hence, the discretization
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(4.9) is conforming. It is also consistent, i.e ||R};[F(upn) — Fu(un)]lly; = 0. It is
a Petrov-Galerkin discretization since the test and trial spaces are different: The
trial functions are discontinuous in time, piecewise polynomials of degree k; the test
functions are continuous in time, piecewise polynomials of degree k + 1.

Relation to Runge-Kutta schemes. In order to better understand the flavour
of problem (1.2) and definition (4.9) we rewrite F},. Recalling that the functions in
Y}, are continuous at the intermediate times o, ...,t)x, and vanish at the final time
T, and using integration by parts on each time interval, for up € X}, and ¢p, € Y3
we get

(F(un), on)y
_ /Q [un (2, 0 + 0) — uo(x)]n(z, 0)de

N,
+ Z_; /Q [un(z, t; + 0) — un(z, t; — 0))pn(x, t;)de

Nro ptjig
+ Z/ / [Osunpn + a(z, un, Vur)Von, — b(x, up, Vup)er]dzdt.

Using the convention that
(4.10) uh(., 0— 0) = Up,
we may write this in the compact form

(4.11)
(F(un), on)y

N,
B J—;{/Q[uh(x’ t; +0) — up(z,t; — 0)|pn(z, t;)d

tj41
+ / / [0,5Uh(,0h + a(z, up, Vuh)thh — bz, up, Vuh)goh]d:cdt}.
We first consider the case £k = 0 and set
u) i=up(,t; 4+ 0) = up(,, tj41 —0) V1<j<N,.

Observing that uy, is piecewise constant on the time intervals, inserting ¢, = A;e)vj,
2 <j < N;,v; €V}, as a test function in (4.11) and using Lemma 3.1, we obtain

(Fr(un), on)vi
= /{ui —ui_l}vjdz
Q
+07; /Q{g(z,ufl, Vufl)ij — b(z, ufl, Vufl)vj}da:

(=0, /Q (o, wl ™1, Val 1YV, — bz, ul "L, Vi Yo, }da.
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Inserting ¢p = /\(10)1)1, v1 € Vi, as a test function in (4.11), we similarly get
(Fn(un), pn)v,, =/Q{u}l — ug}vrdz
+ 07 /Q{g(x,u}“ Vu} )V — b(z, u), Vui vy M.

Hence, in the case k = 0, problem (1.2) yields the popular §-scheme. In particular,
the parameters # = 0,6 = 1, and 6 = % correspond to the explicit Euler scheme, the
implicit Euler scheme, and the trapezoidal rule (Crank—Nicholson scheme). Thus

the time discretization is of first order unless 6 = 2; in this case it is of second

order. Moreover, the time discretization is A-stable if 6 > %
Next we consider the case k > 1. Denote by p;, 0 < [ < k—1, a set of orthonormal
polynomlals of degree [ with respect to the weight function 4¢(1 — t) on [0, 1]. Let

Gi(t) : fopl(s)ds 0<I<k-1,and §_1(t) =1. For 1 < j < N, set
pl,j:=ploFJj 7qm,j::quFJj7 Oflﬁk—ly—lﬁmfk—l-
Then every up € X, and every ¢p € Y}, have unique representations of the form

ZXJ { Z Qi (E)Vp 5 l’)}

p=-—1

on Zx\(e)(t)wg(x +Zw] )X, (1) {ZPuN (@)

j=1 n=0

with v, j,w, j,w; € V;,1 < j < NT. Consider a fixed j € {2,..., N;} and insert
on = Y ()X, ()pp,;(#)wu,j(x),0 < p < k—1, as a test function in (4.11). We then
get

(Fr(un), on)ys,

ti+1
= / / {8tuhcph + g(x, Uh, Vuh)Vaph — b(z, Uh, Vuh)goh}dxdt
tj Q
= [ tus@hwns(@is
ti+1
+/ {/ la(z, un, Vup)Vw, ; — b(x, un, Vup)w, jlde}p; ()p,,;(t)dt.
tj Q

Inserting ¢p, = )\ge) (t)w;(x) as a test function in (4.11), we obtain on the other
hand

(Fr(un), on)y;
/{vlj ) — un(@, t; — 0)yw; (z)da

ti+1
+/ {/ [Orurw; + a(x, up, Vup)Vw; — b(x,uh,Vuh)wj]dx}/\ge)(t)dt.
ti1 Q

With the obvious modifications these expressions also hold for j = 1. Hence,
the coeflicients v j, ..., vk—1,; are functions of the coefficient v_; ;, and the latter
is determined by the values of up on the previous time interval. Thus problem
(1.2) amounts in a (k + 1)-stage implicit Runge-Kutta scheme. A lengthy but
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straightforward calculation shows that, for linear problems, k € {1,2}, and 6§ =
%, this scheme corresponds to the (k + 1)-st diagonal Padé approximation. In
particular, the time discretization then is of order 2k 4+ 2 and A-stable.

Remark 4.1. When we write problem (1.2) in the form (4.11) it strongly resembles
the discontinuous Galerkin method (cf. e.g. [7], [8]). In the discontinuous Galerkin
method, however, the test and trial spaces are identical, and both consist of dis-
continuous in time, piecewise polynomials of degree k. In particular, the case £k = 0
corresponds to the implicit Euler scheme. Due to the discontinuities at the interme-
diate times tg, ..., tx, —1 the discontinuous Galerkin method is non-conforming with
respect to both the standard weak formulation of problem (4.1) and the formula-
tion (4.2). This complicates its analysis within the framework of Secction 2. This
difficulty is overcome in [10]. A different analysis of the discontinuous Galerkin
method is given in [7], [8].

Definition of Rh,ﬁh, and )7;1. In order to put the discretization in the frame-
work of Section 2, we assume that Y}, contains the space 6, defined in (3.6). This
is equivalent to assuming that the space discretization at least consists of linear el-

ements, i.e. V; D S;”(?, 1 < 7 < N,. As restriction operator R, we use the operator

I, defined in (3.9). For the construction of F n and )7;1 we define integers p, v and
approximations a; of a and by of b as follows:

a(z, un, Vun), if a(x, vn, Von)
€SB (SH) Yo € X,
Z m1,00(x, up, Vug), u =1, otherwise,
QEP-

gh(z, Uh, Vuh) =

(4.12)
b(z, un, Vuy), if b(z, vy, Vur)

€ Sy (S ) Yon € X,
Z m0,0b(x, up, Vuy),v := 0, otherwise.
QEP,

bh(CE, Upy Vuh) =

Here, u;, € X}, is arbitrary and my ¢ and 7 o denote the L?(Q)-projections onto
the spaces of polyr}vomials of degree at most 0 and 1 in the variables x and ¢,
respectively. Now, Fj, is defined in the same way as F' with a and b replaced by g,
and by, respectively, and

(4.13) Yy = span{y; Vi v, Y;YgPro, Y;9Yx Pjw:1<j < N, K € T;,E € &,
RS ﬁbm[Kijaa € ﬁ)m|E><Jj7fw € ﬁ7‘r1,|K><{tj}}'

Here, m := max{y — 1,v} and ]T”m denotes the space of polynomials of degree at
most m in the variables z and t.
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The estimators. Given Q = K x J; € P,, we recall the abbreviation (3.16) and
set

e = (i + IV - [a( un, Vun) = an (., un, Vup)]
+ [b(- uny Vun) = bn (- un, Vur)lllLz @)

+hE (B 4 )l - lal, un, V) —ap, (- un, Vun)lell L2 (00.)

4.14
@1 = (h2 +Tj)||8t’uh—V-gh(.,uh,Vuh)—bh(.,uh,Vuh)HLg(Q)

- (hK +75)|lng - [Qh('vuh’vuh)]E”L?}(aQL)

+ 7',.5_ (h% + ) lun(.st; +0) — un(, t5 — 0) ||~ (x)-

The quantity €g,r obviously measures the quality of the approximation of ¢ and b
by a;, and by, respectively, and can be estimated explicitly. Below, we will show that
it yields upper bounds on the second terms on the right-hand sides of estimates
(2.3) and (2.4). Note that in our second example

e <hi\f —mo.of e + hklVunlrz ),
ifk=0and V; = S]0,1<]<N
Estimation of ||(Idy, — Rn)*Fi(us)|ly; and ||(Idy, — Ry)*[F(un) — Fn(un)]lly; -
Next, we will derive upper bounds for the first and second terms on the right-hand

side of inequality (2.3). Recalling equation (4.11) and using, for the space variables,
integration by parts elementwise, we obtain for all ¢ € Y

(4.15)
(F(un), p)y
N,
Z Z {/ up(z,t; +0) — up(z,t; — 0)]p(z,t;)dx
+ /ttﬁl / [Osun, — V - a(z, up, Vuy) — bz, up, Vuy)|pdadt}
/t”l / ng - la(z, uh,Vuh)]Egodsdt}
Ee£ ty
and
(4.16)

N,
Z Z{/ [un(z,t; +0) — up(z,t; — 0)]p(z, t;)dx

j=1 KeT;

ti+1
—I—/ / [Byun — V - ap, (2, un, Vur) — ba(z, up, Vup)|pdzdt}

Jj+1
/ /nE lay(z, uh,Vuh)]E(pdsdt}
¢

Ee&;
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Let ¢ € Y} = Wf,,(ﬂ x (0,T)) be arbitrary. From Lemma 3.4 we obtain for
Q=KxI;eP,1<j<N;, KeT,;,and E C OK\I the estimates

/ [un(z,t; + 0) — un(z,t; — 0)][e(,t;) — Iro(z, t;)]dz
K
< Mlun(ty +0) = wn( 85 = O)llmolle = Irell o a0 )
19
<77 (B +)llun(st5 +0) — un(.,t; — Ollzm o 2l ey
ti+1
/ / [Beun, — V - gy, (z, up, Vur) — bp(z, up, Vup )@ — Irpldzdt
t; K
< N0un =V - @y (s uny V) = ba(s un, Vun)llzg @)l = Irell o o)
= (hk + m)10wun — V - a, (-, un, Vur) — by (., un, Vur)llz@ el oy
ti+1
/ / 1 - [an (2, un, Vi) sl — Lpldsdt
< ”ﬂE : [gh(" Uh, Vuh)]E”LE(aQL) ”‘P - IT‘p”Lfr’l (9Q1)

19
S hg (i + )l - lan (o un, Vun)l el iz 0o 19wy 1 o0.))-

Inserting these estimates in (4.16), using Holder’s inequality for finite sums, and
recalling the definition (4.14), we conclude that

(Fn(un), ¢ — L)

Ak T \p/m p & ’ p'/x’ v
<303 ) DD DD ET L B

j=1 KeT; j=1 KeT;
Assume that p’ < 7’ or, equivalently, p > 7. Then Jensen’s inequality implies that

’

N. 1/p
7|_/ // 7
{Z{ Z II“"“Wfﬁ(U(Kij))}p " } = ”(‘OIIWf:,/(Qx(O,T))’
j=1 KeT; :

Using the abbreviation

2

T

(4.17) n= {302 map)
1 KeT;

J
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we have thus shown that
(4.18) I(Tdy, — Rn)*Fh(un)lly: < n.

Replacing a;, and by, by a;, — a and b, — b, respectively, we conclude with the same
arguments that

(4.19) I(Tdy, — Rp)*[Fu(un) = F(un)llly; <,
where

N 1/p
(4.20) = {Z{ 3 6’(5’”}”/”} .

j=1 KeT;

Estimation of || F},(us)] 7 and || Fy(up) — F(uh)||}~,’:. Now, we will bound the
terms in inequality (2.4). Given a subset Q of Q x (0,7, we set, for abbreviation,
17h|Q ={p e }7;1 : suppy C @}. In order to bound the second term on the right-
hand side of estimate (2.4), we conclude from the shape regularity of the partitions
and a standard scaling argument that the estimate

1
IIQO“L?\_/,(K’XJ’) + h]"{ ”(IOHL:_I/(@K/XJ/) = h?{”@“LP’(J/’WQ:"’(K’))

holds for all ¢ € }N’hlU(Q),Q = K x J;j € Pr,J' CU(J;),K' C U(K). Combining
this with equations (4.14) — (4.16), and using Holder’s inequality, we obtain the
following estimate for all Q € P;:

(421) IF(un) = Fu(um)lly, =2 D eqrm
Q'CU(Q)

where Y}, is equipped with the norm of Y.

In order to derive lower bounds for the left-hand side of estimate (2.4), consider
an a,rbitré,ry Q = K x J; € P;. From Lemma 3.5 with VQ = ﬁm and equation
(4.14) we then obtain

(4.22)
10cun — V - ay, (., un, Vun) — bp (., un, Vur) || 2(0)

= sup ||v||;§, @ / [Orup, — V - ap, (., up, Vug) — bp (., up, Vup) |99k
vEP,, ! Q

—1 =
= s ; F) V¥
S ol g (Fulun) dycvd,

| F (un)|

IN

Fia 530 [Pl ) el

=< {hg’ + Tj_l}”ﬁh(uh)[

Yie



1358 R. VERFURTH

Estimate (4.22), equation (4.16) and Lemma 3.5 with V5 = ﬁm|EXj yield for all
E Cc OK\T

(4.23)
lng - an (s un, Vun)lell Lz og,)

< swp o] / R - [ (o, V)| 9505 P
deﬂime Lp (0Qr) 0QL ’

< sw ol ) oo {(Fulun), wspProly,

L” Ia]
oo, (Qx)

// 6tuh V- ah( uh,Vuh) bh( uh,Vuh)]f:,bJ EPEUd{Edt}
7K

K’CwE
< s ol o IE@s, ., W5 Pooly,
cTE]Pm|3Q ’
+ Y [18un = V- @y (s un, Vun) = bl un, Vun)l| 2z (xrx )
K'Cwg

’ ”ijEPEO.“L';I,(K’XJJ)}

< hE (hy? + 75 M Fh(un))|

Y’*|

From estimate (4.22), equation (4‘.16) and Lemma 3.5 with V5 = ﬁml K x{o} We
further conclude that

(4.24)
”uh("tj + 0) - uh("tj - O)IIL"(K)
< [llgh [t 0~ un(ats — 0 Pruds

wepm|K><{t-}

= s Jlwl;t (K){<ﬁh<uh>,Aijij >v,

WEPM K x {1}

Z / / [Oeun — V - ap, (-, un, Vur) — bp(., un, Vup) Nk Pj wdxdt}

JCU(ty)

< s fwllgh g (1B ()]
wWEPm |k x (15}

Ty NIV Pl

+ > N8wn =V - an (s un, Vin) = bu( un, Vn) | 22 ke x.)
JCU(ty;)

NPyl e }

<T’° {hi2 + 7 HIEn (un) | 5.

Yy kx XU(t; )

Estimates (4.22) — (4.24) and the definition (4.14) yield
(4.25) 1@ 3 AL+ 7ih + 75 H F (un) | 5-

mU@)’

where Y}, is endowed with the norm of Y,.
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A posteriori error estimates. Combining estimates (4.18), (4.19), (4.21), and
(4.25) with Propositions 2.1, 2.2 and recalling that || Rj[F(upn) — Fn(un)]|y: = 0,
we obtain the following result.

Proposition 4.2. Let u be a regular solution of problem (4.1) in the sense of
Proposition 2.1 and definition (4.2), and let up be an approximation of u in the
sense of Proposition 2.2 and definition (4.5). Suppose that p > w. Then the follow-
ing a posteriori error estimates hold:

lu = unllLyax o) = {n+e+ IRy Fu(un)llvy }
and

1Qm I AL+ 75 h + TR Ml — wnllpweny + D, €@t
Q'CU(Q)
VQ =K x J; € P,

The quantities £Q x, NQ,x, N, and € are given by equations (4.14), (4.17), and (4.20).

Remark 4.3. The local lower bounds for ||u — Uh”L;(QX(O’T)) can be combined in
the standard way to the global lower bound
—1;2 -2
n= 15%1%}1(\]7 1%12%{1 +7; Ry + Tk} {llu — Uh“L;(Qx(o,T)) +e}.
The factor 1 + T]-_lh%{ + 7;h}” in this estimate and the second one of Proposition

4.2 reflects the fact that the differential operator js of 2nd order with respect to the
space variables but only of 1st order with respect to the time variable.

Remark 4.4. If p < m one may still obtain upper bounds on the error. Since, in
this case, Jensen’s inequality cannot be used in estimating (F(u), ¢ —I;¢)y, and
(Fn(up) — F(un),¢ — I+p)y, , one must now proceed as follows:

1. Bound the space-integrals by using Hélder’s inequality and Lemma 3.2.

2. On each time-level add all contributions to that level and apply Hoélder’s
inequality for finite sums.

3. Bound the remaining time-integrals by using Hoélder’s inequality and Lemma,
3.3.

4. Add all time-levels and use Holder’s inequality for finite sums.

Remark 4.5. One can establish similar estimates for the L"(0,T’; Wy**(€2))-norm of
the error (cf. Proposition 4.1 in [10]). To this end one must replace Yy, ng.x, €Q,x,
and 1+ 7; "W + 7k’ by Y, hig'ng r, i eqx and on x(hi) + 75 ' hcon n (hi) +
Tjh;{2, resp., where

1 if # < mn,
On,x(R) = { |InA| if T =n,
R i > .

Moreover, the local lower bounds may be combined to global lower bounds at the
expense of an additional factor maux{hl_{1 : K € 7;,1 < j < N;}. This factor
and the term o, ,(hk) are due to the non-local nature of the w-Lr (©)-norm,
which allows only for weaker Poincaré and inverse inequalities (cf. Lemma 3.5 and
Remarks 3.6, 3.7 in [10]).
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