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A POSTERIORI ERROR ESTIMATES 
FOR NONLINEAR PROBLEMS. 

Lr(0, T; LP(Q))-ERROR ESTIMATES FOR FINITE ELEMENT 
DISCRETIZATIONS OF PARABOLIC EQUATIONS 

R. VERFURTH 

ABSTRACT. Using the abstract framework of [9] we analyze a residual a poste- 
riori error estimator for space-time finite element discretizations of quasilinear 
parabolic pdes. The estimator gives global upper and local lower bounds on 
the error of the numerical solution. The finite element discretizations in par- 
ticular cover the so-called 0-scheme, which includes the implicit and explicit 
Euler methods and the Crank-Nicholson scheme. 

1. INTRODUCTION 

We analyze a residual a posteriori error estimator for space-time finite element 
discretizations of parabolic pdes. Each space-time element K x J contributes the 
weighted sum of three terms: 

1. the residual of the computed numerical solution with respect to the strong 
form of the differential operator evaluated on K x J, 

2. the jump across OK x J of that trace operator which naturally connects the 
strong and the weak formulation of the differential equation, and 

3. the jump of the numerical solution across K x &J. 
Here, K stands for an arbitrary element of the spatial mesh and J denotes an 

arbitrary interval of the time mesh. We could also extend our analysis to error esti- 
mators which are based on the solution of auxiliary local time-dependent problems. 
We do not follow this line here, in order not to overload the presentation. 

In order to construct our a posteriori error estimator and to prove that it yields 
upper and lower bounds on the error, we use the techniques introduced in [9] and 
consider in Section 2 abstract nonlinear problems of the form 

(1.1) F(u) 0 

and corresponding discretizations of the form 

(1.2) Fh(UOh) = O. 

Here, F E C1(X,Y*) and Fh E C(Xh,Yh*),Xh C X and Yh c Y are finite dimen- 
sional subspaces of the Banach spaces X and Y, and * denotes the dual of a Banach 
space. 
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If uo E X is a solution of problem (1.1) such that DF(uo) is an isomorphism of 
X onto Y* and DF is Lipschitz continuous at uo, we know from Proposition 2.1 in 
[9] that 

(1.3) cJJF(u) Y*< || U-uO X < CIIF(u) JJy* 

holds for all u in a suitable neighbourhood of uo. The constants c and -c depend on 
DF(uo) and DF(uo)-l. They measure the sensitivity of the infinite dimensional 
problem (1.1) with respect to small perturbations. For a simple model problem we 
derive explicit bounds for c and -c in Section 4. 

When applying estimate (1.3) to an approximate solution uh E Xh of problem 
(1.2) one must evaluate the residual IF(uh) Iy*. This is as expensive as the so- 
lution of the original problem (1.1) since it amounts in the solution of an infinite 
dimensional maximization problem. In order to obtain error estimates wxhich are 
better amenable to practical calculations, we approximate the left and right-hand 
sides of inequality (1.3) by 11-Fh(Uh) lli* and 11(Idy - Rh)*Fh(Uh) IIY*, respectively. 

Here Fh(Uh) is obtained by locally projecting F(uh) onto suitable finite element 
spaces, Yh consists of appropriate test functions having a local support, and Rh is 
a suitable quasi-interpolation operator. 

For parabolic pdes, these general results lead to error estimates in 
an Lr(O, T; WO'P(Q))-norm. The space Y then consists of functions in 
LP'(0, T; WO J (Q)) having their time derivative in LP (O, T; W-1'7'(Q)). Due to 
the non-local nature of the W-1 T (Q)-norm we get into troubles when deriving 
lower bounds on the error. This problem is tackled in [10]. Here, we circumvent 
this difficulty by imposing a weaker Lr(0,T;LP(Q))-norm on X and a stronger 
LPI (0, T; W2' ' (Q) n WO' (Q))-norm on Y. The corresponding spaces will be de- 
noted by X_ and Y+, respectively. In particular, the functions in Y+ now have time 
derivatives in LP (O, T; L7r (Q)). 

In Section 4 we apply the general results of the previous sections to scalar quasi- 
linear parabolic pdes of 2nd order. Problem (1.1) then is a variational formulation 
which is weaker than the weak formulation and stronger than the very weak formu- 
lation of the pde. The discrete problem (1.2) is a Petrov-Galerkin discretization. 
The trial space Xh consists of functions which are discontinuous in time and piece- 
wise polynomials of degree k > 0. The test space Yh consists of functions which 
are continuous in time, piecewise polynomials of degree k + 1, and which vanish 
at the final time T. This discretization corresponds to an implicit (k + 1)-stage 
Runge-Kutta scheme. When applied to a linear problem its stability function is 
the (k + 1)-st diagonal Pade approximation. For k = 0 we in particular obtain the 
Crank-Nicholson scheme. By slightly modifying the basis functions of Yh we may 
also recover the popular 0-scheme for all 0 E [0,1]. This in particular covers the 
explicit (0 = 0) and implicit (0 = 1) Euler schemes. 

We obtain global upper and local lower bounds for the error measured in an 
Lr(0, T; LP(Q))-norm. The upper and lower bounds differ by a factor 1 + T-1h2 + 
Th-2. Here, h and T are the local mesh-sizes in space and time, respectively. This 
factor reflects the fact that the differential operator is of 2nd order with respect to 
the space variables but only of 1st order with respect to the time variable. The local 
lower bounds may be combined to a global lower bound of the same type. In Remark 
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4.5 we briefly comment on error estimates with respect to an Lr(0, T; W1'P(Q))- 

norm and the corresponding difficulties. A more detailed analysis, also including 
the time-dependent incompressible Navier-Stokes equations, may be found in [10]. 

When applied to the corresponding particular examples, our error estimates are 
similar to those obtained in [7], [8]. However, only upper bounds on the error are 
established there. Moreover, the techniques and, most important, the discretiza- 
tions considerably differ from ours. The discontinuous Galerkin method of [7], [8] 
is non-conforming with respect to both the weak and the very weak formulations of 
a parabolic pde. It corresponds to an implicit (k + 1)-stage Runge-Kutta method 
having the (k + 1)-st subdiagonal Pade approximation as stability function. In par- 
ticular, the lowest order scheme (k = 0) corresponds to the implicit Euler method, 
and the Crank-Nicholson scheme is not covered by this family of discretizations. 

In what follows we will always adopt the following convention: 

a < b a < cb, 
a b a --< b and b -< a. 

Here, the constant c must not depend on any mesh size. 

2. ABSTRACT ERROR ESTIMATES 

Let X,Y be two Banach spaces with norms .I 11x and 11.1 y. For any element 
u E X and any real number R > 0 set Bx(u,R) := {v E X: IIu-vIIx < R}. 
We denote by C(X, Y) and Isom(X, Y) C C(X, ?') the Banach space of continuous 
linear maps of X in Y equipped with the operator norm II.IIL(X,Y) and the open 
subset of linear homeomorphisms of X onto Y. By Y* := C(Y,iR) and (.,.)y 
we denote the dual space of Y and the corresponding duality pairing. Finally, 
A* E C(Y*, X*) denotes the adjoint of a given operator A E C(X, Y). 

Let F E Cl(X,Y*) be a given continuously differentiable function. Given a 
solution uo E X of problem (1.1) and an arbitrary element u E X "close" to uo, we 
may estimate the error lu - uollx by the residual JJF(u)JJy* (cf. Proposition 2.1 
in [9]). For parabolic pde's we thus obtain control on the Lr(0, T; WO'P(Q))-norm 
of the error. However, we are interested in controlling the Lr(0,T;LP(Q))-norm 
of the error. In order to achieve this within the present abstract framework, we 
must enlarge the space X and reduce the space Y. We therefore consider three 
additional Banach spaces X, X+, and Y+ such that X+ C X C X_ and Y+ c Y 
with continuous and dense injections. Here, the +/- sign indicates a space with a 
stronger/weaker norm. We assume that X_ is reflexive. 

Proposition 2.1. Let uo E X be a solution of problem (1.1). Assume that uo E 
X+, that DF(uo)* E Isom(Y+,X*L), and that there are two numbers Ro > 0 and 
o > 0 such that 

(2.1) [DF(uo) - DF(uo + tw)]wlly+ < /tllwllx+ |lwllx 

VVw E Bx+(0, Ro), t E [0, 1]. 

Set 

R:= min{Ro,Y-1 JDF(uo)*II L(XY+), 2-1 JDF(uo)* IL(Y+,X*2)} 
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Then the following error estimate holds for all u E Bx+ (uo, R) 

(2.2) 

- IDFQuo)* CY X-) IF(u)11y; < Iu-uollx ?211DFQuo)* l(,Y)F)y. 2IID(UO*IL(Y+,X*) II()I+<|UU|X <lD(O*IIL(X* y+)IIF(u)jjy+ 2 

Proof. Let u E BX+ (uo, R). Consider an arbitrary element w E X* and set po 
DF(uo)* w E Y+. We then have 

(u - uo, W)x_ =(DF(uo)(u - uo), o)y+ 

=(F (u), o) y+ 
1 

+ ] ([DF(uo) - DF(uo + t(u - uo))](u - uo), cp)y+dt. 

Inequality (2.1) and the continuity of DF(uo)* -' imply that 

1 3([DF(uo)- DF(uo + t(u- uo))](u-xuo), )y+dtl 

< -01Bu - uo lX+ Ilu - uo'llx- II9IY+ 

< -/3DF(uo)* IL(X*,y+)Rllu - uollx llwx*. 

Combined with the above representation of (u - uo, w)x-, this yields 
1 ~~~~~~~1 

(U - uo, W)X < {| DF(uo)* IIC(X* ,Y+) F(u)jjy; + ?- lu - Uo0 xj }w1x-* ?2 

Since X_ is reflexive and w E X was arbitrary, this implies the upper bound of 
estimate (2.2). 

In the same way, we obtain 

(F (u), o) y+ 

1 (u-uo, w)XW-| ([DF?(uo)-DF(U o + t(u-uo))](u-uo), ()y+xdt 

< Ilu - uo Ilx- llwllx*+-pl 201- uo11X+ lU - uo11X-1IkOY+ 

< 211DF(Uo)* IIL(Y+,X*) |U-UO IIX IIY+Y 

Since 'p E Y+ is arbitrary, this proves the lower bound of estimate (2.2). C 

The condition DF(uo)* E Isom(Y+,X*) of Proposition 2.1 is more restrictive 
than the assumption DF(uo) E Isomn(X, Y*) which is needed to bound u - uo IIx 
by JjF(u)jjy* (cf. Proposition 2.1 in [9]). For pdes, it is equivalent to an additional 
regularity condition. For linear problems, i.e. when DF is constant, one may 
extend F by continuity to a continuously differentiable map of X_ to Y+. Then 
the space X+ is not needed. For nonlinear problems, however, this extension may be 
impossible, or the derivative of the extension may be no longer Lipschitz continuous. 
This is the place where the space X+ comes into play. 

The factor IIDF(uo)* IIL(Y+,X*) in the lower bound of estimate (2.2) corresponds 
to a differential operator which is local and the norm of which can be estimated 
in terms of its coefficients. The factor IIDF(uo)*- IIL(X*,Y+) in the upper bound 
of estimate (2.2) is much more severe. In some applications, in particular when 
X_ is a Hilbert space, IIDF(uo)*' IIL(X*,Y+) can be replaced by IIDF(uo)*'wlly+, 
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where w E X * satisfies II w x= 1 and (u - uo, w)x- = u-uo x-. The quan- 
tity IIDF(uo)*-lwlly, may be estimated numerically by approximately solving a 
discrete analogue of the corresponding adjoint pde. 

Let Xh C X+ and Yh C Y be finite dimensional subspaces and Fh E C(Xh, Yh*) 
be an approximation of F. Given an approximate solution Uh E Xh of problem 
(1.2), Proposition 2.1 allows us to estimate the error uO - Uh llX by the resid- 
ual IF(Uh) Iy;. The evaluation of the latter, however, is a difficult task since it 
amounts in the solution of an infinite dimensional maximization problem. In order 
to obtain an approximation of the residual which is easier to compute, we introduce 
a restriction operator Rh E L(Y, Yh), a finite dimensional subspace Yh c Y+, and 
an approximation Fh: Xh 7 Y* of F at Uh. In the context of pdes Fh is obtained 
by locally freezing the coefficients of the differential operator. We equip Yh with 
the norm of Y+. 

Proposition 2.2. The following estimates hold: 

(2.3) 

IF(Uh) IIY+ < I (Idy - Rh)*h(Uh) IIY + ? (Idy+ - Rh)*[F(Uh) - Fh(Uh)] IIY 

? IIR[F(Uh) -Fh(Uh)] y; + |lR7Fh(uh) iy; 

and 

(2.4) jFh(Uh)jjy* < IIF(uh)jjy* + ?IF(Uh) - Fh(Uh)j y 

If there is a constant co, which does not depend on h, such that 

(2.5) ||(Idy+ - Rh) *Fh(uh) Iy < C Io Fh(Uh)I j, 

then both II(Idy+ - Rh)*Fh(Uh) IIy and jFh(Uh-) ljj yield upper and lower bounds 
for the residual ||F(Uh) IY;. 

Proof. Estimate (2.3) follows from the identity 

(F(Uh), p)y+ =(Fh(Uh), (p - Rh'P)Y+ + (F(Uh) - Fh(Uh), 'p - Rh'P)Y+ 

+ (F(Uh) -Fh (Uh), Rhf ) Y+ + (Fh(Uh), Rh'P)Y+ 

which holds for all 'p E Y+. Estimate (2.4) follows from the triangle inequality. 
The stat-ement concerning upper and lower bounds for the residual is an obvious 
consequence of inequality (2.5). E] 

The second terms on the right-hand sides of estimates (2.3) and (2.4) measure 
the quality of the approximation Fh (Uh) to F(uh). Usually, they are higher or- 
der terms when compared with II(Idy+ - Rh)*Fh(Uh) I|y and I|Fh(Uh) IIj*. The 
term IIR*[F(Uh) -Fh(uh)] IY; 

is the consistency error of the discretization. It 
can be estimated a priori and vanishes in the applications of Section 4. The term 
IIR*Fh(uh) Iy; 

measures the residual of the algebraic equation (1.2) and can be 
evaluated by standard methods. Inequality (2.5) is a non-trivial condition since 
it claims that a supremum with respect to an infinite dimensional space may be 
bounded from above by a supremum with respect to a finite dimensional space. 

Propositions 2.1 and 2.2 will be used in the following way. Any upper bound 
for II(Idy+ - Rh)*Fh(uh) Iy; yields a reliable error estimator. If in addition the 

error estimator yields a lower bound for jFh(Uh)jjly, it is also efficient. Here, 
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we adopt the standard convention that an error estimator is called reliable (resp. 
efficient) if it yields an upper (resp. lower) bound for the error. Moreover, upper 
and lower bounds may contain multiplicative constants which do not depend on 
the discretization parameter h. 

3. AUXILIARY RESULTS 

F'unction spaces. Let Q be a bounded, connected, open domain in RIri,n > 2, 
with polyhedral boundary F. For any open subset w of Q with Lipschitz boundary 
-y, we denote by WkP(w), k E N,1 < p < oo, LP(w) := W0P(w), and LP(y) the 
usual Sobolev and Lebesgue spaces equipped with the standard norms (cf. [1] and 
Vol. 3, Chap. IV in [6]). Let 

WJ'P(Q) := {u E W1'P(Q): u = 0 on F} 

and set for 1 < p < o0 

W-1P'(Q):- lp(Q) 

Here, p' denotes the dual exponent of p defined by 1 + p = 1. In what follows, a P/ p 
prime will always denote the dual of a given Lebesgue exponent. 

Let V and W be two Banach spaces such that V C W with continuous and dense 
injection. Given two real numbers a and b with a < b, we denote by LP(a, b; V), 1 < 
p < o0, the space of measurable functions u defined on (a, b) with values in V 
such that the function t - u(., t)tlv is in LP((a, b)). LP(a, b; V) is a Banach space 
equipped with the norm 

||U||LP(a,b;V) = 14 { Iu.t) ipvdt} 

(cf. [6], Vol. 5, Chap. XVIII, ?1). Slightly changing the notation of [6], we further 
consider the Banach space 

WP(a, b; V, W):= {u E LP(a, b; V): &tu E LP(a, b; W)} 

equipped with the norm 

HJUHJWP(a,b;V,W) { |u(., t) || vdt + ? 10tu(* t) | wdt} 

Here, the partial derivative &tu must be interpreted in the distributional sense (cf. 
[6], loc. cit.). For all smooth functions 'p E D((a, b)) it satisfies the identity 

rb rb 
j &tu(., t)o(t)dt - u(., t)>'(t)dt, 

where the integrals are taken in W. From Proposition 9 in [6], loc. cit., it follows 
that the traces u(., a) and u(., b) are defined as elements of W, provided p > 1. We 
therefore set for 1 < p < oo 

Wbp(a, b; V, W) := {u E WP(a, b; V, W): u(., b) = 0}. 

Given an interval I C ER, a suitable subset w C Q, and numbers 1 < p, Xr < oc, we 
will use the following abbreviation: 

LP (w x I) LP(I;L()), W(w x ): L 
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Finite element partition. Denote by T > 0 an arbitrary but fixed time. Let 
IT= {[t=,tj+ j+ 1 < j < NT},T > 0, be a family of partitions of [0,T] with 
0=t< t2 < ... tN+ = =T. For 1 <j NT set 

Ji := [tj, tj+1], Fj := tj+- tj 

We assume that the family IT is shape regular, i.e., the ratios Tj/Tj+1 and Tj+ I/TI 

are bounded from above independently of j and T. 

With each 1 < j < NT, we associate a partition 7j of Q into n-simplices. We 
denote by Ej the set of the interior faces of 1j. For K Ec T9 and E E Ej let hK, 
PK, and hE be the diameter of K, the diameter of the largest ball inscribed into 
K, and the diameter of E. We assume that the partitions fj satisfy the following 
two conditions: 

(1) Admissibility: Any two simplices of 1j either are disjoint or share a complete 
smooth submanifold of their boundaries. 

(2) Shape regularity: The ratio hK/PK is bounded from above independently of 
K E 19, j, and T. 

Condition (2) allows the use of locally refined meshes. It implies that the ratio 
hK/hE, for all K E '19, all faces E of K, and all j, is bounded from above and from 
below by constants which do not depend on K, E, j, and T. 

Denote by 

PT {K x J.:1 < j < NT, K Ef 

the partition of the space-time cylinder Q x [0, T] into prisms which is induced by 
IT and the 19's. 

For any E E Ej, 1 < j < NT, and any piecewise continuous function u, we denote 
by [U]E the jump of u across E in an arbitraryfbut fixed direction nE orthogonal 
to E. Finally, we introduce the following neighbourhoods of elements and points: 

U(tj) := [tmax{,1J-}1 tminiN{N+1Jj+1}1I < j < NT, 

U(J3) := U(tj) U U(tj+1) = [tmax{l,j-1},tmin{N+1,j+2}1, 1 j K NT 

U(K):= U K', K Ej, 1 < j < NT, 
K' nK#0 

U(E):= U K', E E E., 1 < j < NT, 
EnKI AO 

IK' Ej 

(3.1) U(P):= U PI, PePT, 

PnP'#Vo 

wK U U K', K 9 E1?, I < j < NT, 
K' fnKES 

K'ETj 

WEE : U K', EEj, 1 < j < N,. 
ECaK' 
KI Efj 

Here, K n K' E Si means that K and K' share a complete (n - 1)-dimensional 
smooth submanifold of their boundaries. 
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Finite element spaces. Denote by Pk, k > 0, the space of polynomials (in x) 
of degree at most k. Given an admissible partition Th of Q, we define the finite 
element spaces (in x) as usual: 

Sh' ={U: Q R: U|K E Pk VK ET h}, k > O0 

(3.2) h:= Sh n C(Q), k > 1, 

sk0:={U E Sk'0:u=0onF}, k>1. 

For any k > 1 and any 1 < p < oc we obviously have S k,' c W1'P(Q) and 
c~~~~~~~~~~~~~~~~~ Sh k,O C WO1Q 

Let V1, ..., VN, be finite element subspaces of C(Q) associated with the partitions 

El ... TN introduced above. For k > 0, we define finite element spaces in space 
and time by 

(3.3) S4: (Vh(T)) = span{XJi (t)tLvj,(x): 0 < j ? k, 1 < j < NT, Vj,1 E Vj}. 
Here, Xjj denotes the characteristic function of the interval Jj. The elements of 
Sk-1 (Vh(T)) are discontinuous at the intermediate points t2, ..., tN,. But the left- 
sided limits u(.,tj - 0) lim u (.,tj - t) exist for all 2 < j < NT + 1; and the 

o<t--~o 
right-sided limits u(., tj + 0) := lim u(., tj + t) exist for all 1 < j < NT. We have 

o<t-~ 
S4S-1 (Vh(T)) C LlP(Q x (0, T)) for all 1 < p, r < oc. But due to the discontinuities 
at the intermediate points t2, ..., tN, the space SkE-'(Vh(T)) is not contained in 
any of the spaces WP(0, T; W 1'(Q), L7(Q)), 1 < p, ir < oc. In order to obtain 
conforming approximations of these spaces, we denote by Aj(t), 1 < j < NT + 1, 
the piecewise linear function corresponding to 1T which takes the value 1 at the 
point tj and which vanishes at all other points ti, 1 < i < NT + 1, i 74 J. Set 
bj(t):- 4A(t))Aj +1(t), 1 < j < NT, and for 0 E [0,1] define 

3 1 
Aj9) (t) t Aj (t) + -(0 - 1)[bj(t) - bj1(t)] , 2 < j < NT, 

2 2 

(3.4) Aj) (t) := Aj(t) ? (0- )bj(t) 2 2 

AN,+l(t) -= AN,+1(t) - (0 - I)bN (t) 2 2 

Obviously, the functions A(112) and Aj coincide. For k > 2 we then set 

S; l'0(Vh(T)) := span{A(0)(t)vj(x): 1 < j < NT,vj E Vj 

(3.5) S$k'(Vh(T)) = S71'0(Vh(T)) e span{XJ (t)tL"bj(t)wj,8(x) 

0 < / < k - 2, 1 < j < NT, wj, - EV)}. 

For all k > 1 and 1 < p, ir < oc we have S$kO(Vh(T)) C WT(0, T; W1'7(Q), L (Q)). 
Moreover, on the open subintervals (tj, tj+i), 1 < j < NT, the distributional de- 
rivative &tu of u E SO;k,(Vh(T)) coincides with the classical partial derivative. For 
abbreviation, we introduce the space 

(3.6) 0r := S0;1'0(Vh(T)) with Vj = S ,1 ? j < NT. 

It will play a fundamental role in deriving reliable error estimates. Figure 1 shows 
the functions Aj0) for some values of 0. The following lemma collects some properties 
of these functions. We omit its straightforward proof (cf. Lemma 3.1 in [10]). 
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.8 ~~~~~~~~~~~0. 
/0.6- - \,.6 \ 

0.4- 0.4 

0.2- 0.2- 

-1 -0.5 0.5 1 -1 -0.5 0.5 1 

0.M - \ ~~~~~~~0.8- < 

_ 5 0.5 1 - 2 - 0.5 1 

FIGURE 1. A( top left, A23) top right, A. bottom left, AP1) 
bottom right 

Lemma 3.1. The functions A 0), 1 < j < NT + 1, 0 e [O, 1], defined in (3.4) have 
the following properties: 

j Aj0)(t)dt = OTj, V I<j<NT,0E[0,1], 

tj 

j A(0)(t)dt = (1 - 0),Tj, V2 < j < NT + 1, 0 E [0, 1], 

Aj0)(t) + ?A)1(t) = 1 onjj, VI < j < NT,I0 e [0, 1], 

A(O) (t) = Pj+0) (tj + tj+l -t) on Jj, VI1 < j < NT I 0 c [O, 1],I i 
j+1~ ~~1 

V1 < j < NT + 1,0 E [-- -],t E [0,T], 

A>)(t)j< - V1?<j<NT+1,0e[0,1],te[0,T]. - 3 

Interpolation in space. Let Th be an admissible and shape regular partition of Q 
into n-simplices. We denote by Ih: L1 (Q) -> S1:? the quasi-interpolation operator 
of Clement (cf. [5] and Exercise 3.2.3 in [4]). 

Lemma 3.2. The operator Ih satisfies the following error estimates for all K e 
Th,E E g'h, and 1 <p <: 

U - IhUjWkP(K) h' -k VOW<P(U(K)) VO < k < I < 2, u WC,P(U(K)), 

||2-Iu||LPE) <h1 VI|W (UE)8 < I < 2, u E W vP (U (E)), IU - hUlILP(E) E zP 111W1P(U(E))Vi<<2zC 

11IhU11LP(K) < jJU |W2,P(U(K)) + ||U||LP(K) VU C W2,p(U(K)). 

Proof. The first two inequalities follow from [5] and Exercise 3.2.3 in [4]. The third 
estimate follows from the first one and the triangle inequality. DH 
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Interpolation in time. Let V and W be Banach spaces as above. For 1 < j < 
NT + 1 we denote by 7rj: W'(O, T; V, W) - V the L2(U(tj))-projection, i.e. 

I Ftj+l 
(3 7) j Tj + Tj-1 J1 (. t)dt. 

Here, we formally set 

TO T= FN?+l= O := 0 , tNT+2 := T. 

Note that the integral in (3.7) is taken in V. 

Lemma 3.3. The operator 7rj satisfies the following estimates for all 1 j < 
NT + 1, e WP(O,T; V, W), and l < p < oo: 

II-FjUIILP(U(tj);Z) <_ IIUIILP(U(tj);Z)i Z = V, W, 

IU - 7FUILP(U(tj);W) < 2(Tj +? Tj-)II&tUIILP(U(tj);W)) 

IU(., ti) - IFjU W < (Tj + Ti-1)P II0tUILP(U(tj);W) 

Proof. From (3.7) and H6lder's inequality we obtain 

I'tj?1 
7F U IILP(U(t); Z) = (Tj + 'Ti)P - 1 u(., t)dtllz < IlU ILP(U(tj);Z)- 

From H6lder's inequality we get, for all t e U(tj), 

tj P/ 

Taking the p-th power and integrating from tj-1 to tj+1, this yields 

(3.8) 11 -U(-(,t) ILP(U(tj);W) < (TTj + 'Tj_) 9tU IILP(U(tj);W). 

Combining estimate (3.8) with the first assertion of the lemma, we obtain 

||2 - 
7jUlILP(U(tj);W) 

< IU - U(-. tj) LP(U(tj);W) + Iu(-, tj) - 7iUlILP(U(tj);W) 

= IU -U(.,tj tjI LP(U(tj);W) + IIwj[u(., tj) - U]| LP(U(tj);W) 

< 2(,Tj + Tj-1)II|0tUIILP(U(tj);w)- 

Estimate (3.8), the definition of 7rw and H6lder's inequality finally yield 

114(, tj) - 7rjUll w= 11 7rj [u(., tj) - u] 11w - 

stj+1 

< (rj + r-l) 1 jIlu(. tj, u(. t,IIWdt 

< (7 + ?Tj71Y? 'I - 
u(-,ti) IILP(U(tj);W) 

? (Tj +Tj II)P &0tUILP(U(tj);W)- 

This proves the last assertion of the lemma. El 
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Interpolation in space and time. Now, we combine the operators Ii, corre- 
sponding to T9, and 7rj, and define the operator I: WP(O, T; Wo'7(Q), L7(Q)) - 

0T,l <p,7r < oo, by 

NT 

(3.9) lIu ZAj0)(t)-FIjju. 
j=1 

Note that 7rj and Ij commute for all 1 < j < NT. 

Lemma 3.4. The operator 'T satisfies the following error estimates for all Q 
K x Jj, 1 < j ? NT,K E Tj,E E C:,1 <p,7r < oo, E [0,1], andu E WP(U(Q)): 

IU'- TUIILp(Q)(h?Tj)ju)) 

||2-I72|LP(EXJ h < h (h' + Tj)jjujjWP(U(Q))j IU - 1TU11L7P(ExJj) K 
h(hr ?K ) 

||u(,ty)-Iu.,tj||LK) <rj P(h' + Tj)jjujjwP(u(Q))- 

Proof. The definition of IT and Lemma 3.1 imply that the splitting 

u - Tu = A0)fu - Ij7ru} + A 1 f{u - Ij+?iwj+lu} 

holds on Jj. Invoking Lemma 3.1 once more, we obtain 

IIU - 'TULPr(Q) < 31U - Ij7jU11LPr(Q)+ U - Ij+l1j+?U |LP(Q)} 

Let k j or k j + 1. Lemmas 3.2 and 3.3 and the shape regularity of 1T yield 

IU -IklkkUllLp7r(Q) 

' IU -Ik-U Lpr(Q) + IIIk[UW-TkU] IL7r(Q) 

I IUILP(Jj,W2,-(U(K))) + IU -IFkU11LP(Q) 

(hKA + (U) 111 s(Q)) . 

This proves the first estimate of the lemma. The second one is established in the 
same way. 

In order to prove the third estimate, we now write 

U(., tj)-IU(., tj) = u(., tj) - 7rjju(., tj) 

= U(., tj) - 7rj(., tj) + 7rj Mu., tj) -IjU(., WI)] 

Lemmas 3.2 and 3.3 and the definition of 7rj then yield 

U|(. ti) - I-rU(, ti)I IL -(K) 

< zU(-, ti) - wr ( ,ti) L (K) + flFj[U(-, tj) - IU(-,tj)1 I L-(K) 

K Tj IIttu L|L(U(Q)) + Tj U-IjIu lL-LP(U(Q)) 

Ti s(hK complet hPe (Up(Q))r 

This completes the proof. FCH 
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Local cut-off functions. Denote by k:= {x e IR Z> Xi < 1, > 0 ,1 < j < 

n} the reference n-simplex and set F:= KA n f{ E Rn: }n.= O}- Let 
n n n n-I 

K(P(X) :=(n + 1)n+? [1 - J fi ] I j, p() =jn [1n - Z i] fi Xj. 
i=1 j=l i=1 j=1 

Given an arbitrary n-simplex K and a face E of K, we denote by FK K k 
K,xs, -> x := FK(X) bK + BKXI~ an invertible affine mapping such that K is 
mapped onto K and F is mapped onto E. Let FE F -E E be the tranformation 
induced by FK and denote by /3K its Gram determinant. One easily checks that 
O3K = det(B" Bj1)1/2. Here BK denotes the matrix which is obtained by discarding 
the last column of BK. 

Let J [0,1] be the unit interval, and set 

Fpj(t) := 4t(1 - t). 

Given an arbitrary interval J [a, b], a < b, we denote by FJ J - J the invertible 
affine mapping which maps J onto J and 0 onto a. Set 

Q:= K x J, &QL E x J, &QB = K x {1} 

and define the transformations FQ Q - K x J, FaQL &QL --Q E x J, and 

FaQB &QB --Q K x {10} by 

FQ := (FK,FJ), FaQL (FE,FJ), FaQB = (FK,a). 

Finally, we denote by VQ C Ll?(Q), VaL C L?(09QL), and V.,QB C L' (0QB) 
three arbitrary finite dimensional spaces which are kept fixed in what follows. In 
applications, these spaces will be subspaces of appropriate spaces of polynomials. 
We set 

VQ {fi o F'1: fi eV, 

V&QL = {8?oFQL :eaVDL }a ) 

V&QB {OF&aQB vaeV } 

Let Th be an admissible and shape regular partition of Q into n-simplices. Given 
an arbitrary simplex K e Th, denote by AK1, ... AK(n+l) its barycentric coordinates, 
and set 

in+1 

(3 . 10) 'OK {{(n + )n+1 HAKi }2 on K, 

0 on Q\K. 

The function 'fK obviously has the following properties: 

'OK =f{pkoFK } onK, 
0 <?'K(x)<1 Vx e Q, 

max'VK(x) 1, 
(3. 11) xCK 

OK = 0 on OK, 

V'OK = 0 on OK, 

'O E C01(Q). 
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Given E E 'h, denote by K1 and K2 the two simplices adjacent to E, and enumerate 
their vertices so that the vertices of E are numbered first. Set 

n 

(3.12) { {n2fn l (AK1iAK2i )}2 on WE, 

t 0 on Q\WE. 

One easily checks that the function fE has the following properties: 

F~E ={(pEoFE } on E, 

O <'f E(X)?<c(n, mgax ) Vx EQ, 
KCTh PK? 

(3.13) xmGaEx E (x) =1 
xCE 

OE = 0 on 0WE, 

VbE = on 0WE, 

'OE EE C' (Q) 
In particular, the restriction of 'FE to E depends only on the vertices of E. 

For 1 < j < NT, we set 

(3.14) fj(t) := { 4 (t tj)(tj+l 
_ 

t) if t E j, 

Obviously, we have 

0?< j(t) < 1 VteR, 

(3.15) max' j (t) = 1, 
tcJj 

0j 0 on WJj, 

,0j C C(R). 
Let 1 < j < NT, K E j, and E E Fj be arbitrary. We then use the following 
abbreviations: 

(3.16) Q:= K x Jj, IQB:= K x {tj}, OQL:= E X Jj. 

We define a continuation operator Pj: L?(09QB) -- L?(K x U(tj)) by 

(3.17) Pju(x, t) := u(x, tj) V(x, t) E K x U(tj). 

Next, we want to define a continuation operator PE: L (0QL) -- 
L?(WE x Jj). 

To this end, we denote by XE = (XE1, ..., XEn) a Euclidean coordinate system such 
that E is contained in the set {XEn = 0}. We then set X4 := (XE, ..., XE(n-1)) and 
define 

(3.18) PEJ(XE,Lt) {'E (XE0) (X E, ,t) if (x4, 0) E E, 
0 ~~~~if (xl,I0) ~ F. 

Note that, without any restriction on the partition Tj, the factor 'E in the definition 
of PE ensures that V(PEo) E C(WE X Jj) if VXu E C(E x Jj). The factor 'FE 
may be dropped if 7j has the following property: For any E E Fj, the orthogonal 
projections of all vertices of WE onto the plane {XEn = 0} lie inside E. In two 
dimensions this means that the triangulation Tj is weakly acute. 
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Lemma 3.5. Let 1 < j < NT,K e 79, and E e Fj be arbitrary, and recall the 
abbreviations (3.16). Assume that the functions in V-, V -L, and V&3QB are con- 
tinuously differentiable with respect to the time variable and twice continuously dif- 
ferentiable with respect to the space variable. Then the following estimates hold for 
all u e VQ, a e VaQL, V e VaQB, and 1 < p, 7r < oo: 

fQwP'U+jKv 
IIUIILp;r(Q) sup 

fQ sup j|L 
KV 

WGVQ |V LP(Q) 

IjI '0pj'KUIILP (Q) V2('OPj'PKU) IILp (Q): 

II~HL(aQL) 5U~ fQL 5J' P'FEPEX 
-1 qIqIP,j,-KUIIL 5QZ)11 (I jK UQ I I L P (Q) hE 

II+j+PE5IlLT(EXJVfaQl 
(+j+E j5lEP(EXJj 

'ry |lfj+E 11(LP(aQ, J) - SUt(jPEP()lPw3 j 

4Y+jPEPEJ lLPr(WEXJj) -< _E/ IIXIIL) ) 

||| IU K V'(KW 

hK I A j K PjV I | Lp (Uj(Q) ) ||V (Aj E KPjv ) I I Lp (U(Q) ) , 
fr1|| AjOKPjV |LP(U(Q)) 11&t (Aj'KPjV) LPT(U(Q)), 

AT KPJV| LU(U(Q)) Q< V 

Proof. We prove the estimates concerning u. The upper bound in the first estimate 
follows from H6lder's inequality and 0 < V)K ? 1, 0 < 4 j < 1. In order to prove the 
lower bound of the first estimate, one easily checks that the mapping 

iL --~supf yP? 

defines a norm on VQ. Since dim VQ < oo, there is a constant c such that 

CUjfljP(~)?< sup a( ( vCV~~~ 
VI L/,(Q) 

The definition of VQ therefore yields 

sup fQ uj+KV =1 detBK 1- sup f2 uFQOJQk 
VGVQ IIVIILPI(Q) cVQ 1 IIL,(Q) 

> cnPIdetBK 'TIUOFQI L(Q) 

C Ur 
= 

CMulLPT( Q ) 

In order to establish the second and third estimates, we observe that the mappings 
it -- 

V211 )j(0JokfL) IILP (Q) and it -1 &tQ(bJ'V) || LP (Q) define norms on the finite 

dimensional space VQ which are equivalent to the standard norm 11-1ILPO)- The 

desired estimates now follow in the usual way by transforming to Q, using the 
equivalence of norms there, and transforming back to Q. 
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The estimates concerning a and v are established in the same way, taking into 
account that PEa and Pjv are constant along lines perpendicular to E and with 
respect to time, respectively. For a more detailed proof see Lemma 3.8 in [10]. 0 

4. QUASILINEAR PARABOLIC EQUATIONS OF 2ND ORDER 

Variational setting. As a model problem we consider the parabolic boundary 
value problem 

&tu-V a(x, u, Vu) = b(x, u, Vu) in Q x (0, T), 

(4.1) u=0 onrx(0,T), 

u(-, O) = uo in Q. 

Here, b E C1(Q x R x R',IR) and a E C1(Q x R x Rn,IRn) are such that the 
matrix A(x, y, z) (2 (zjai (x, y, z) + &z aj(x, y, Z)))l<i,j<n is positive definite for 
all x E Q, y E R, z E R . Moreover, T > 0 denotes an arbitrary final time which is 
kept fixed. 

Under suitable growth conditions on a, b, and their derivatives there are real 
numbers 1 < p, r, 7r, p < oo such that problem (4.1) fits into the abstract framework 
of Section 2 with 

X := Lr (0, T; W0 ,P (Q)) 

Y = WTP (0,T; W0, 
7 

(Q) IW - 1,7' ) I 

(F (u), (,o) :=(u0, (Po(., 0)) w r 
(4.2) T 

-/(u(. , t)I o9tW(p I t))W wl,dt 
T 

+ / j{a(x, u, Vu)Vp - b(x, u, Vu)>p}dxdt. 

We recall that a prime denotes the dual of a Lebesgue exponent, i.e. I + -, - 1, 
p 

etc. In order to ensure that F is well defined, we always assume that 

(4.3) p > 7r. 

Within the framework of Section 2, we further set 

Y+ :=WT(0, T; W2,,'(Q) n0 W '(Q), L7 (Q)) 

(4.4) X_ L'(0, T; LP(Q)), 

X+ :L'(0? T;Wo IQ) 

where p < a < oo. 
In order to better understand the flavour of problem (1.1) and definition (4.2), 

we recall the notions of weak and very weak solutions of problem (4.1) (cf. [2], 
Sections 11 and 13). A function u E W'(0, T; W'p P(Q), W 1'(Q)) is called a weak 
solution of problem (4.1) if 

u(., 0) = uo in W-1<7(Q) 

and 

(0tu(-t),(., t))Wi<' + j a(x, u, Vu)Vp - b(x, u, V7u>p} dxdt 0 / 
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for all p E LP (0, T; W,7' (Q)). It is a very weak solution if u E X_ and 
T 

- (uo, (p(, 0))LP -J I t), It(p(., t)ILPdt 

I T 

+ {(a(. u, ,Vu), V7(pwi<,' - (b(x, u, Vu), 'O)w11' }dt = 0 

for all fp E Y+. Obviously, every solution of problem (1.1) is a very weak solution of 
problem (4.1). Conversely, every very weak solution of problem (4.1) is a solution 
of problem (1.1) if it is contained in X. Using integration by parts with respect to 
the time variable, one sees that every weak solution of problem (4.1) is a solution 
of problem (1.1), and that the converse is true if the solution of problem (1.1) is 
contained in WT(O,T; WJ'P(Q) IW- (Q)). In this sense, a solution of problem 
(1.1) is weaker than a weak solution and stronger than a very weak solution of 
problem (4.1). 

One easily checks that DF(u)* E Isom(Y+,X*) if and only if the adjoint lin- 
earized problem 

-&tW - V* (A(x, u, Vu)Vw) + &y a(x, u, Vu) . Vw 
+V. (V7b(x, u, Vu)w) - &yb(x, u, Vu)w = g in Q x (0, T), 

w = 0 on r x (0, T), 

w(.,T) = 0 in Q 

admits, for each g E X*, a unique-solution w E Y+ such that IwIIy+ I IgIIx*. 

Examples. We consider two particular examples: 
(1) A heat equation with nonlinear source term: 

a(x, u, \7u) = Vu, 

b(x, u, Vu) = f(u), 

f E C1(R,IR), 

If'(s)1 ay Vs E , 

p= r = 7 = p= 2. 

(2) A nonlinear convection-diffusion equation: 

a (x, u, Vu) := k(u) 7u 

b(x, u, V7u) := f-c(x, u) V 2, 

f E L O(Q),ccE C'(Q x JR R n kEE C2 (RI R)I 

k(s) > oa > 0, I k(l) (s Vs E X IR, E {0, 1, 2}, 
&asc(x, s) ?< V Vx E Q, s E R, 

p = r E (n,4),p > n ,r > 2p. 

If in example (1) the constant y is sufficiently small, we may use an energy esti- 
mate and a perturbation argument to get explicit bounds on IIDF(u)*1 1L1(X* Y+) 

in terms of the norm of the inverse Laplacian with homogeneous Dirichlet boundary 
conditions. More precisely, denote by cA := 11(-_A) -IL(L2(Q), Wo 2(Q)nWW22(X)) the 
norm of the inverse Laplacian with homogeneous Dirichlet boundary conditions. 
This quantity only depends on the geometry of Q. Inserting a and b given above 



A POSTERIORI ERROR ESTIMATES FOR NONLINEAR PROBLEMS 1351 

into the adjoint linearized problem, we immediadely see that DF(u)* L - N, 
where L is the operator associated with the time-reversed heat equation 

-&tv--Av = g in Q x (O, T), 

(4.5) v=O on rx(O,T), 

v(., T) = O in Q, 

and where the operator N is given by 
rT 

(4.6) (Nv, ()Y+ j J f'(u)vp. 

From equations (4.5) and (4.6) we deduce that 

IILI c(Y+,X*) < 2, ||N||z(Y?,X*) ?< Y 

and, hence, 

IIDF(u)* lLc(Y?,X*) < 2 +y. 
Multiplying the first equation of (4.5) by -&tv, integrating over Q x (0, T), and 
integrating by parts with respect to the space variable, we conclude that 

(4.7) ||&9tV L2 (Qx(O,T)) 1191 L2(Qx(O,T)) 

Writing the first equation of (4.5) in the form 

-/\v = g + &tV 

and using the estimate (4.7), we obtain on the other hand that 

(4.8) flV||L2(0,T;W2,2(Q)) < CAV{ 1911L2(QX(O,T)) + &0tV 1L 2(Qx(O,T))} 

< CA g L2(QX (O,T3)- 

Estimates (4.7) and (4.8) yield 

JIL-' IIL(X*,Y+) < 1 + VF8CA. 

Assume that y(1 + V8-cA) < 1. A standard perturbation argument then gives 

IDF(u)*' llIL(X*,Y+) < |IL- IL(X*,Y+)[l -|L- IL(X*,y+) INL(Y+X*)] 

< 1 + \/,CA 
1 

--y(1?+VCA) 

Finite element discretization. For the discretization of problem (4.1) we pro- 
ceed as in Section 3. We choose a family 1,7 of shape regular partitions of the interval 
[O, T]. With each time tj, 1 < j < NT, we associate an admissible and shape reg- 
ular partition Tj of Q into n-simplices and a finite element space Vj C WIa (Q) 
corresponding to 79 and consisting of affine equivalent finite elements in the sense 
of [4]. We choose an integer k and a parameter 0 E [0,1], and set 

Xh h(r) 
yh 5Ok-l,(V 

) 

(4.9) Yh S 1'0(Vh(T)) 

(Fh(Uh), )h Yh (F(Uh), Ph)Y VUh E Xh, (Ph E Yh 

For simplicity, in (4.9) we use the parameter h for the mesh sizes both in space 
and in time. We recall that the spaces on the right-hand side of (4.9) are defined 
in (3.3) and (3.5) and that Xh c X+ and Yh c Y. Hence, the discretization 
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(4.9) is conforming. It is also consistent, i.e RJ[F(Uh) - Fh(Uh)]||Y+ = 0- It is 
a Petrov-Galerkin discretization since the test and trial spaces are different: The 
trial functions are discontinuous in time, piecewise polynomials of degree k; the test 
functions are continuous in time, piecewise polynomials of degree k + 1. 

Relation to Runge-Kutta sch.emes. In order to better understand the flavour 
of problem (1.2) and definition (4.9) we rewrite Fh. Recalling that the functions in 
Yh are continuous at the intermediate times t2, ..., tNT and vanish at the final time 
T, and using integration by parts on each time interval, for Uh e Xh and fPh e Yh 
we get 

(F(Uh), Ph)Y 

j[Uh(x, 0 + 0) - U0(X)kh(X, O)dx 

NT 

+ E j [Uh(X, tj + 0) - Uh(X, tj - 0)]Ph(X, tj)dx 
j=2Q 

NT tj+? 

+ ] [0&tuhPh + a(x, Uh, VUh)Vph - b(x, Uh, VUph)^]dxdt. 
j=1 tj 

Using the convention that 

(4.10) Uh(, 0-0) := Uo, 

we may write this in the compact form 

(4.11) 
(F(Uh), (Ph) Y 

{J [Uh(X, tj + 0) - Uh(X, tj -0)I(h(X, tj)dx 

Ftj+j 
+ j j[&tuh i h + a(x, Uh, VUh)Vh --b(x, Uh, VUh)Ph]dxdt}. 

We first consider the case k = 0 and set 

h Uh(., tj + 0) = Uh(-, tj+1 -0) V1 < j < N. 

Observing that Uh is piecewise constant on the time intervals, inserting AMh = j vy, 
2 < j < I E Vi, as a test function in (4.11) and using Lemma 3.1, we obtain 

(Fh(Uh), Ph)Yh 

- {uh h }vydx 

+ 0Tj j{a(x, uj , V2u)Vvj - b(x, uj, Vuj)vj}dx 

? (1- 0)Tj-1 j{a(x, uj1 ,7Vw71 )Vvj - b(x, j71 , Vuj I)vj}dx. h hUh 
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Inserting fPh A (0)v,I Vi V 1, as a test function in (4.11), we similarly get 

(Fh (Uh), (h ) Yh - j{U- uo}vidx 

+ 0T jf{a(x, u)u, Vu))Vvi - b(x, u)', Vu)vl }dx. 

Hence, in the case k = 0, problem (1.2) yields the popular 0-scheme. In particular, 
the parameters 0 = O, 0 = 1, and 0=- 12 correspond to the explicit Euler scheme, the 
implicit Euler scheme, and the trapezoidal rule (Crank-Nicholson scheme). Thus 
the time discretization is of first order unless 0 = 1; in this case it is of second 
order. Moreover, the time discretization is A-stable if 0 > 1 

-2' 

Next we consider the case k > 1. Denote by Pl, 0 < I < k-1, a set of orthonormal 
polynomials of degree I with respect to the weight function 4t(1 - t) on [0,1]. Let 

fq Pi (s)ds, 0< I < k-1, and q_(t) = 1. For 1 < j < N,, set 

pi,j := Pi ? FFI qm,j := m o F < I < k-1-1 < m < k-1. 

Then every Uh e Xh and every fPh e Yh have unique representations of the form 

N, k-i 

Uh Z X Jjt){ E q,j (t) v,j(x)} 
j=I A=-1 

NT NT k-i 

fPh S Aj0 (t)wj (x) + E oj (t)X j (t) { Z p,,j (t)w,,,j (x) } 
j=i j==o 

with v,,j, W,j,wj E Vj,l < j < NT. Consider a fixed j e {2,...,N,} and insert 
h = 'Oj (t)XJj (t)pv,j(t)Wv,j(X), 0 < < k - 1, as a test function in (4.11). We then 

get 

(Fh(Uh), (Ph) Yh 

rtj+j 

= j j {&tUhPh + a(x, Uh, VUh)V(ph - b(x, Uh, VUh)ph}dxdt 

= j vy,j(x)w8,;(x)dx 

Ftj+l 
+ j {j[a(x Uh, VUh)VW,,j - b(x, Uh, VUh)W,',j]dx}Ij(t)p,,j(t)dt. 

Inserting Ah =A0)(t)wj(x) as a test function in (4.11), we obtain on the other 
hand 

(Fh (Uh), Ph) Yh 

j{v_ Ij (X) -Uh (X, tj -O) }wj (x)dx 

+ j {j [0tuhWj + a(x, Uh, VUh)VWj - b(x, Uh, VUh)wj]dx}Aj ) (t)dt. 

With the obvious modifications these expressions also hold for j = 1. Hence, 
the coefficients Vo,j, ..., Vki-,j are functions of the coefficient v_,j, and the latter 
is determined by the values of Uh on the previous time interval. Thus problem 
(1.2) amounts in a (k + 1)-stage implicit Runge-Kutta scheme. A lengthy but 
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straightforward calculation shows that, for linear problems, k E {1, 2}, and 0 
1 this scheme corresponds to the (k + 1)-st diagonal Pade approximation. In 2'1 
particular, the time discretization then is of order 2k + 2 and A-stable. 

Remark 4.1. When we write problem (1.2) in the form (4.11) it strongly resembles 
the discontinuous Galerkin methQd (cf. e.g. [7], [8]). In the discontinuous Galerkin 
method, however, the test and trial spaces are identical, and both consist of dis- 
continuous in time, piecewise polynomials of degree k. In particular, the case k = 0 
corresponds to the implicit Euler scheme. Due to the discontinuities at the interme- 
diate times t2, ..., tN, -1 the discontinuous Galerkin method is non-conforming with 
respect to both the standard weak formulation of problem (4.1) and the formula- 
tion (4.2). This complicates its analysis within the framework of Secction 2. This 
difficulty is overcome in [10]. A different analysis of the discontinuous Galerkin 
method is given in [7], [8]. 

Definition of Rh, Fh, and Yh. In order to put the discretization in the frame- 
work of Section 2, we assume that Yh contains the space 0T defined in (3.6). This 
is equivalent to assuming that the space discretization at least consists of linear el- 
ements, i.e. Vy D Sj'o 1? < < NT. As restriction operator Rh we use the operator 

IT defined in (3.9). For the construction of Fh and Yh we define integers A,, v and 
approximations ah of a and bh of b as follows: 

a a(x, Uhh, VUh), if a(x, Vh, VVh) 

gah(X,uh,Vuh) = E S'-l (SII-l)VVh E Xh, 
E S ,,Qa(X, Uh,VUh),/: 1, otherwise, 

(4.12) 

rb(x, Uh, VUh), if b(x, Vh, VVh) 

bh(x,I Uh, VUh) = e T(Sh(T))VhXh, 
E 7ro,Qb(x, Uh, VUh), V 0, otherwise. 

1. Qe7'T 

Here, Uh E Xh is arbitrary and 7Fo,Q and W1,Q denote the L2(Q)-projections onto 
the spaces of polynomials of degree at most 0 and 1 in the variables x and t, 
respectively. Now, Fh is defined in the same way as F with a and b replaced by ah 

and bh, respectively, and 

(41)Yh= span { j'OK V, jOE PE 0.,'jOK Pj W: I < j < NT,,K E Tj,E E cEj, 
(4.13) Y .7< 

V E 'DmlKxJj I a E IDmlExJj, W E KmlKx{t} }. 

Here, m := max{[t - 1, v} and Em denotes the space of polynomials of degree at 
most m in the variables x and t. 
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The estimators. Given Q = K x Jj e PT, we recall the abbreviation (3.16) and 
set 

EQ,1 :=(h' + Tj)|V' * [a(-,Uh, VUh) - ah( Uh, VUh)] 

+ [b(., Uh, VUh) - bh(-, Uh, VUh)] LP (Q) 

+ hK 1(hK< + jT)l nE [a(-, Uh, Vuh) - h(, Uh, VUh)IE ILP(aQL), 
(4.14) ?1Q<:= (hK + Tj) &|0tUh-V * ?h(-, Uh, VUh) - bh(-, Uh, VUh)I Lp(Q) 

+ hK (h' + T) llnE *ah(-. Uh, VUh)IE 11LP(aQL) 
1 -1 

+ (h+ Tj)luh(-, tj + O) -Uh(, tj -?)11L-(K). 

The quantity EQ,, obviously measures the quality of the approximation of a and b 
by ah and bh respectively, and can be estimated explicitly. Below, we will show that 
it yields upper bounds on the second terms on the right-hand sides of estimates 
(2.3) and (2.4). Note that in our second example 

CQ,ir ? hKllf - 7FO,Qf IILP(Q) + h% IVUh||LP(Q), 

if k = O and V> S= lo < j < NT. 
i o 

Estimation of |(Idy+- Rh)*Fh(Uh) jjy and ||(Idy+- Rh)*[F(Uh) -Fh(Uh)1HYj+. 
Next, we will derive upper bounds for the first and second terms on the right-hand 
side of inequality (2.3). Recalling equation (4.11) -and using, for the space variables, 
integration by parts elementwise, we obtain for all p e Y 

(4.15) 

(F(U h), P)y 

NT 

= E t{ [Uh(X, tj + 0) - Uh(X, tj - 0)]p(x, tj)dx 
j=1 KET3 

rtj+1 + j [0tUh - V * a(x, Uh, VUh) - b(x, Uh, VUh)]pdxdt} 

tj +1 

? /Th j nE * [a(x,Uh,VUh)]EPdsdt} 
EES3 t3 E 

and 

(4.16) 

(Fh (U h), P) Y 

= { E t{ [Uh(X tj + 0) - Uh(X, tj - 0)]p(x, tj)dx 
j=1 KE7T3 

stj+l 

+ 
j /?[0tUh - V* ah(X, Uh, VUh) - bh(X, Uh, VUh)]pdxdt} 

? zJ 1t JE nE* [ah(X, Uh, VUh)]EPodsdt}. 
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Let p e Y+ = W, (Q x (0, T)) be arbitrary. From Lemma 3.4 we obtain for 
Q = K x IJ e PT, 1 < j < NT, K e 7j, and E C &K\F the estimates 

[Uh(X,tj +0) -Uh(X,tj - 0)][(p(x,tj) - ITp(x,tj)]dx 

< ||Uh(., tj + 0) -Uh(., tj - O) ||L1(K)1P ||-I(PIILP, (IQ,) 

, TJp (h< + Tj)|lZUh(.,tj + 0) - Uh(. ,tj -O)flL-(K)11lP11WP'(KxU(tj)) 

rtj+1 
/13+1 J[atUh - V ah(x,uh,Vuh) - bh(x,Uh,VUh)][P -I]dxdt 

? W&Uht-Z 
V * ah(., Uh, VUh) -bh(, Uh, 

VUh)IILp(Q)lPI-ITPfILP 
(Q) 

- (h' + Tj) 0&t Uh -V 
*- 

ah(, Uh, VUh) - bh(, Uh, VUh) IILP (Q) I|I Wp'(U (Q)) 
i 

Ftj+l 

Jtjy1 J hnE * [ah(X, Uh, VUzh)]E4[P - IT]dsdt 

? lInE -h( TUh,VUh)fE1L (aQ,) ||P-ITWI1LP'(aQL) 

- hE (h' +Tj)llnE * [ah(-,Uh,vUh)]ELPr(Q,)l(pllwsp(U(aQL))- 

Inserting these estimates in (4.16), using H6lder's inequality for finite sums, and 
recalling the definition (4.14), we conclude that 

(Fh (Uzh), (-I (P) 

< { ,{ S tfr} }P/lr}{ ~{_ / }]9Q, '/ t 
K' }1/ 

j=1 KEj j=1 KE T(U(KxJ)) 

Assume that p' < 7r' or, equivalently, p > 7r. Then Jensen's inequality implies that 

{, /j z 1/p/ 
{ E { E 11(P11 7r 

' (p u Kx j)) 
r 

11(P11 WP,(Q x(O,T)) - 
j=1 KET3 

Using the abbreviation 

N, / 
(4.17) 7:{ S{ 5 /7 P 

j=l KE7j 
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we have thus shown that 

(4.18) | (Idy+ - Rh)*Fh(Uh)fIIY+ ; 7. 

Replacing ah and bh by ah- a and bh- b, respectively, we conclude with the same 
arguments that 

(4.19) l (Idy+ - Rh)* [Fh(Uh)- F(Uh)] IY -Y+ 6, 

where 

(4.20) Et E S 7 /P 
j=l KEj3 

Estimation of IlFh(Ujh)flV and 11Fh(Uh) - F(Uh)jlj. Now, we will bound the 
terms in inequality (2.4). Given a subset Q of Q x (0, T), we set, for abbreviation, 

YhIQ = {(p e Yh suppp C Q}. In order to bound the second term on the right- 
hand side of estimate (2.4), we conclude from the shape regularity of the partitions 
and a standard scaling argument that the estimate 

1 (Pll LP, (K x J/) hK 11 (Pll LP' (,9K x JI) K hl(PlLP/(J W2,/(K/)) 

holds for all p o YhlU(Q),Q = K x J. e PT, JI c U(Jj),K' c U(K). Combining 
this with equations (4.14) - (4.16), and using H6lder's inequality, we obtain the 
following estimate for all Q E PP: 

(4.21) flF(Uh) -Fh(zh)Wiy E S 6Q' 7 

Q'CU(Q) 

where Yh is equipped with the norm of Y+. 
In order to derive lower bounds for the left-hand side of estimate (2.4), consider 

an arbitrary Q = K x J. e PT. From Lemma 3.5 with VQ = Pm and equation 
(4.14) we then obtain 

(4.22) 

IlatUh-V * (-, Uh, VUh) - bh(., Uh, VUh) IILP (Q) 

- sup |lv ||L( J [at U-V ah(,th,Vuh) -abh(., Uh, VUth)P]0j'KV 

-sup flvKI1, (Fh (Uh)i'VjyKVK) Y+ ~~~~ 
vEP LT/(Q) 

< ||h(Uh)IIjyh1Q SUp IIVIILP Q)I1 FK1 K flFq(z sup 
fLVfl(Q) I +Kjj'VK V IIY? 

h-~ h2 ? _1IP(h)I~Q K Ti~~~~hI 
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Estimate (4.22), equation (4.16) and Lemma 3.5 with V&QL mIEXJ yield for all 
E C &K\F 

(4.23) 

flnE *ah(.,Uh,VVUh)]EIILpL(aQL) 

sup IIpL(&QL) f E [ah(., Uh,VUh)]E'OjV)EPEU 
UEPIl~maQL J&QL 

CJ 
sup I U 

1 
1 P 

/ 
(Fh (U h) V) vj 

V) 
E PE 9) Y, 

K sup j 
UEElm IaQL 

7r 

+ [09 |t Uh -V * ah, h(, Uh,VUh) - bh( , 'Uh, iVUh)P/)j /)EPEUdxdL 

KCWE fi ''EEfY 

< 
su 

(&L I{fFh(Uth)hIIwExJ,_ 
jV)EPE Y 

UK CUIaQLQ 

? S: 11&tUh- Vah(.<Uh,VZUh) -bh(.zUh,VzUh)L?P(K'xJj) 
K'cwE 

I KI1j4'EPEfII LP/ (K X Jj)} 

E< hEj{hjE 
? 

x7}Fh(zJh)jl - 

From estimate (4.22), equation (4.16) and Lemma 3.5 with V,QB = Pmlkx{O} we 
further conclude that 

(4.24) 
Uh (.,tj + 0) -Uh (-h(tj - O) II LL (K) 

-q _ sup IIWIIl/(K) J[Uh( tj + 0) - Uh(. tj - 0)]Aj'OKPjwdx 
WEPmlIKX {tj L} 

K 

- _ sup flwflj/(K){< Fh(Uh),AjV)KPjW >Y+ 
WEPImIKX {tj } 

- f JK[0tUhV 
- 

h(a, Uh, VUh) - bh(., Uh, VUh)]Aji'KPjwdxdt} 
JCU(t3) 

< sup flwlLAr/(K){WlFh(th)lIY.KxU(t)fy 
WEPlmIKx {tj } 

+ E flOta;, - V ah. Uh, VUh) - bh(., Uh, VzUh)IlLp(KXJ) 

JCU(tj) 

*lAjV)KPWIlLP (K x J)} 

K T { 
hKK 

? T}lFh (h) x U(tj) 

Estimates (4.22) - (4.24) and the definition (4.14) yield 

(4.25) 7QQ, q {1 ? TjhK ? T lh 2}-Fh(Uh)fl where T K endowed with thenormW(Q) 

where Yh is endowed with the norm of Y?. 
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A posteriori error estimates. Combining estimates (4.18), (4.19), (4.21), and 
(4.25) with Propositions 2.1, 2.2 and recalling that || Rh [F(Uh) - Fh (Uh)] fl Y = 0, 
we obtain the following result. 

Proposition 4.2. Let u be a regular solution of problem (4.1) in the sense of 
Proposition 2.1 and definition (4.2), and let Uh be an approximation of uv in the 
sense of Proposition 2.2 and definition (4.5). Suppose that p > v. Then the follow- 
ing a posteriori error estimates hold: 

IIU-ZUhI!Lr(QX(O,T)) {? 6+ E + H|R*Fh(Uh)HIY?} 

and 

?7Q, X {1 ? h2 + TjhK }{2fll - UhflL(U(Q)) + S EQ', 
Q'cU(Q) 

VQ -K x J PT. 

The quantities EQ,4, rpQ,7, ri, and E are given by equations (4.14), (4.17), and (4.20). 

Remark 4.3. The local lower bounds for flu - UhflLr(QX(0,T)) can be combined in 
the standard way to the global lower bound 

71 q max max{1 + -1 hK + Tjh 2}.{flu-UhlLr(Qx(O,T)) + ?4- 

The factor 1 + w-1hh2 + Trh -2 in this estimate and the second one of Proposition 
4.2 reflects the fact that the differential operator is of 2nd order with respect to the 
space variables but only of 1st order with respect to the time variable. 

Remark 4.4. If p < 7r one may still obtain uppor bounds on the error. Since, in 
this case, Jensen's inequality cannot be used in estimating (Fh(Uh), p - ITP)y+ and 

(Fh(Uh) - F(Uh), p - ITP)Y+, one must now proceed as follows: 
1. Bound the space-integrals by using H6lder's inequality and Lemma 3.2. 
2. On each time-level add all contributions to that level and apply Holder's 

inequality for finite sums. 
3. Bound the remaining time-integrals by using H6lder's inequality and Lemma 

3.3. 
4. Add all time-levels and use H6lder's inequality for finite sums. 

Remark 4.5. One can establish similar estimates for the Lr(0, T; WJ'P(Q))-norm of 
the error (cf. Proposition 4.1 in [10]). To this end one must replace Y+, ?7Q,I, EQ,i, 
and 1 + T71h<K + TjhK2 by Y, hK1j7Q,7rj hKj6Q,-r and un,ir(hK) + Tj-h2K(n,ir(hK) + 

TJhK2, resp., where 

01 if -< n, 

Un,7r (h) llnhl if r = n, 
thn/7r-1 if 7r > n. 

Moreover, the local lower bounds may be combined to global lower bounds at the 
expense of an additional factor max{h71: K E fj, 1 < j < NT}. This factor 
and the term gn,,(hK) are due to the non-local nature of the W`1 '(Q)-norm, 
which allows only for weaker Poincare and inverse inequalities (cf. Lemma 3.5 and 
Remarks 3.6, 3.7 in [10]). 
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